由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860  6520  7326  6798  7325  8430  8215  7453  7446  6754
7638  6834  6460  6830  9860  8753  9450  9860  7290  7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
组别
步数分组
频数


2


10





2



 
(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,试分别比较与以的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
某公司为庆祝成立二十周年,特举办《快乐大闯关》竞技类有奖活动,该活动共有四关,由两名男职员与两名女职员组成四人小组,设男职员闯过一至四关概率依次是,女职员闯过一至四关的概率依次是
(1)求女职员闯过四关的概率;
(2)设表示四人小组闯过四关的人数,求随机变量的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
甲、乙、丙三名大学生参加学校组织的“国学达人”挑战赛, 每人均有两轮答题机会,当且仅当第一轮不过关时进行第二轮答题.根据平时经验,甲、乙、丙三名大学生每轮过关的概率分别为,且三名大学生每轮过关与否互不影响.
(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记为甲、乙、丙三名大学生中过关的人数,求随机变量的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
已知,随机变量的分布如下:

-1
0
1




 
增大时,( )
A.增大,增大B.减小,增大
C.增大,减小D.减小 ,减小
当前题号:4 | 题型:单选题 | 难度:0.99
大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:
日需求量







频数







 
天记录的各日需求量的频率代替各日需求量的概率.
(1)求该超市水果日需求量(单位:千克)的分布列;
(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
图,从甲地到丙地要经过两个十字路口(十字路口与十字路口),从乙地到丙地也要经过两个十字路口(十字路口与十字路口),设各路口信号灯工作相互独立,且在路口遇到红灯的概率分别为.

(1)求一辆车从乙地到丙地至少遇到一个红灯的概率;
(2)若小方驾驶一辆车从甲地出发,小张驾驶一辆车从乙地出发,他们相约在丙地见面,记表示这两人见面之前车辆行驶路上遇到的红灯的总个数,求的分布列及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得分、分、分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功互不影响.
(1)求选手甲第一关闯关成功且所得分数为零的概率;
(2)设该学生所得总分数为,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某射手在一次射击训练中,射击10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则这个射手在一次射击中射中10环或7环的概率为_________.
当前题号:8 | 题型:填空题 | 难度:0.99
为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查,被抽取的观众的评分结果如图所示.

(1)从甲地抽取的8名观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率。
(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90分的人数为,求的分布列与期望。
当前题号:9 | 题型:解答题 | 难度:0.99
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取m个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

(1)根据样本数据,试估计盒子中小球重量的中位数与平均值(精确到0.01);
(2)从盒子装的大量小球中,随机抽取3个小球,其中重量在内的小球个数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99