- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随机将
这2n个连续正整数分成A,B两组,每组n个数,A组最小数为
,最大数为
;B组最小数为
,最大数为
,记
(1)当
时,求
的分布列和数学期望;
(2)令C表示事件
与
的取值恰好相等,求事件C发生的概率
;
(3)对(2)中的事件C,
表示C的对立事件,判断
和
的大小关系,并说明理由.






(1)当


(2)令C表示事件



(3)对(2)中的事件C,



一个盒子中装有大小相同的小球
个,在小球上分别标有1,2,3,
,
的号码,已知从盒子中随机的取出两个球,两球的号码最大值为
的概率为
,
(Ⅰ)问:盒子中装有几个小球?
(Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量
(如取2468时,
=1;取1246时,
=2,取1235时,
=3),
(ⅰ)求
的值;(ⅱ)求随机变量
的分布列及均值.





(Ⅰ)问:盒子中装有几个小球?
(Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量




(ⅰ)求


(本小题满分12分)
某员工参加
项技能测试(技能测试项目的顺序固定),假设该员工在每一项技能测试中获得优秀的概率均为0.9,且不同技能测试是否获得优秀相互独立.该员工所在公司规定:三项均获得优秀则奖励
千元,有
项获得优秀奖励
千元,一项获得优秀奖励
千元,没有项目获得优秀则没有奖励.记
为该员工通过技能测试获得的奖励金(单位:元).
(Ⅰ)求该员工通过技能测试可能获得奖励金
的分布列;
(Ⅱ)求该员工通过技能测试可能获得的奖励金
的均值.
某员工参加






(Ⅰ)求该员工通过技能测试可能获得奖励金

(Ⅱ)求该员工通过技能测试可能获得的奖励金

为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为
,求
的分布列及数学期望.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为


甲、乙两名射手各进行一次射击,射中环数
、
的分布列分别为:
(I)确定
、
的值,并求两人各进行一次射击,都射中
环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中
环,则射击结束,否则继续射击,但最多不超过
轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过
次的概率.


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(I)确定



(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中




某军事院校招生要经过考试和体检两个过程,在考试通过后才有体检的机会,两项都合格则被录取.若甲、乙、丙三名考生能通过考试的概率分别为0.4,0.5,0.8,体检合格的概率分别为0.5,0.4,0.25,每名考生是否被录取相互之间没有影响.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为
求
的分布列和数学期望.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为


某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为
元.
、
的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为

表1
等级 | 一等品 | 二等品 | 三等品 | 次品 |
表2
等级 | 一等品 | 二等品 | 三等品 | 次品 |
利润 |
(1)求


(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为
、
、
(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.



(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.