刷题首页
题库
高中数学
题干
某城市为鼓励人们乘坐地铁出行,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30站的地铁票价如下表:
乘坐站数
票价(元)
3
6
9
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站,甲、乙乘坐不超过10站的概率分别为
,
;甲、乙乘坐超过20站的概率分别为
,
.
(Ⅰ)求甲、乙两人付费相同的概率;
(Ⅱ)设甲、乙两人所付费用之和为随机变量
,求
的分布列和数学期望.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 08:37:58
答案(点此获取答案解析)
同类题1
槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解
,
两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)从
班的样本数据中随机抽取一个不超过19的数据记为
,从
班的样本数据中随机抽取一个不超过21的数据记为
,求
的概率;
(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到
班同学人数的分布列和数学期望.
同类题2
某班的健康调查小组从所在学校共选取15名男同学,其年龄、身高和体重数据如下表所示(本题中身高单位:
,体重单位:
).
年龄
(身高,体重)
年龄
(身高,体重)
15
,
,
18
,
,
16
,
,
19
,
,
17
,
,
(1)如果某同学“身高-体重
”,则认为该同学超重,从上述15名同学中任选两名同学,其中超重的同学人数为
,求
的分布列和数学期望;
(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.
1
2
3
4
5
年龄
15
16
17
18
19
平均体重
59
63.3
64
70
69.7
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:
,
,
,
,
,
,并将每组的平均身高依次折算为155,160,165,170,175,180,各组的体重按平均体重计算,数据整理如下表.
1
2
3
4
5
6
平均身高
155
160
165
170
175
180
平均体重
48
57
63
68
74
82
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高
的男同学的平均体重,你认为哪个更合理?请给出理由;
(ii)请根据方案②建立平均体重
与平均身高
的线性回归方程
(数据精确到0.01).
附:
,
.
,
,
,
.
同类题3
为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴,财政补贴由地方财政补贴和国家财政补贴两部分组成. 某地补贴政策如下(
表示纯电续航里程):
有
三个纯电动汽车
店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下:
(每位客户只能购买一辆纯电动汽车)
(1)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是
店纯电动汽车且享受补贴不低于3.5万元的概率;
(2)从上述
两个纯电动汽车
店的客户中各随机选一人,求恰有一人享受5万元财政补贴的概率;
(3)从上述
三个纯电动汽车
店的客户中各随机选一人, 这3个人享受的财政补贴分别记为
. 求随机变量
的分布列. 试比较数学期望
的大小;比较方差
的大小. (只需写出结论)
同类题4
某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量
(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量
(百斤)与每个蔬菜大棚使用农夫1号液体肥料
(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,用最小二乘法求出
关于
的线性回归方程
;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量
是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
周光照量
(单位:小时)
30<X<50
光照控制仪最多可运行台数
3
2
1
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式:
,
.
同类题5
小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从
,
(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.
(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
求离散型随机变量的均值