- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- + 随机变量及其分布
- 离散型随机变量及其分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个袋子内装有2个绿球,3个黄球和若干个红球(所有球除颜色外其他均相同),从中一次性任取2个球,每取得1个绿球得5分,每取得1个黄球得2分,每取得1个红球得1分,用随机变量
表示2个球的总得分,已知得2分的概率为
.
(Ⅰ)求袋子内红球的个数;
(Ⅱ)求随机变量
的分布列和数学期望.


(Ⅰ)求袋子内红球的个数;
(Ⅱ)求随机变量

交强险是车主必须为机动车购买的险种,若普通
座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

某机构为了研究某一品牌普通
座以下私家车的投保情况,随机抽取了
辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
以这
辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家里的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损
元,一辆非事故车盈利
元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆事故车的概率;
②若该销售商一次购进
辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.



某机构为了研究某一品牌普通


类型 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这

(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,



(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损


①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆事故车的概率;
②若该销售商一次购进

已知一个口袋中装有n个红球(
且
)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.
(Ⅰ)当
时,设三次摸球中(每次摸球后放回)中奖的次数为X,求X的分布列;
(II)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大?


(Ⅰ)当

(II)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大?
在如图所示的正方形中随机选择
个点,则选点落入阴影部分(边界曲线
为正态分布
的密度曲线的一部分)的点的个数的估计值为( )
附:若
,则
.
.




附:若




A.![]() | B.![]() | C.![]() | D.![]() |
某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为
)购买这四种新产品的情况,记录如下(单位:件):
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)

顾 客 产 品 | | | | | | | | | | | | | | | |
A | 1 | | | 1 | | | | 1 | | | 1 | | | 1 | |
B | | 1 | | 1 | | 1 | | 1 | 1 | | 1 | | 1 | | 1 |
C | 1 | | | 1 | 1 | | | 1 | | 1 | | 1 | | | 1 |
D | | 1 | | 1 | | 1 | 1 | | | 1 | | | 1 | | |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)
某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过
关者奖励
件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.



(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;
(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;
(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.
一只袋中装有编号为1,2,3,…,n的n个小球,
,这些小球除编号以外无任何区别,现从袋中不重复地随机取出4个小球,记取得的4个小球的最大编号与最小编号的差的绝对值为
,如
,
或
,
或
或
,记
的数学期望为
.
(1)求
,
;
(2)求
.










(1)求


(2)求

某地区试行高考英语考试改革:每年举行2次英语学业水平统一测试,但考生只能从高二开始参加该测试,一共可参加4次测试,测试成绩分为优秀、良好、合格、不合格四类,小张计划从高二开始就参加该测试,并且获得优秀后不再参加测试,假设他在高二年级参加考试获得优秀的概率为
,在高三参加考试获得优秀的概率为
.
(1)求小张在第三次测试才获得优秀的概率;
(2)规定小张测试优秀或参加完4次测试就结束,记结束时小张参加考试的次数为
,求随机变量
的分布列和数学期望.


(1)求小张在第三次测试才获得优秀的概率;
(2)规定小张测试优秀或参加完4次测试就结束,记结束时小张参加考试的次数为

