- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 判断所给事件是否是互斥关系
- + 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数
小于
表示空气质量优良,空气质量指数大于
表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.

(1)若该人到达后停留
天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;
(2)若该人到达后停留3天(到达当日算1天〉,设
是此人停留期间空气重度污染的天数,求
的分布列与数学期望.




(1)若该人到达后停留

(2)若该人到达后停留3天(到达当日算1天〉,设


减轻雾霾的“雾炮”机的工作原理与建筑工地上常用高压水枪除尘的原理差不多,某公司为测试他们生产的“雾炮”的降尘作用,经过100次测试得到了某“雾炮”降尘率的频数分布表:

(1)估计降尘率在
以下的概率;
(2)若降尘率达到
以上,则认定雾炮除尘有效,请根据以上数估计该雾炮的除尘有效的概率.

(1)估计降尘率在

(2)若降尘率达到

已知P(B)>0,A1A2=∅,则下列成立的是( )
A.P(A1|B)>0 |
B.P(A1∪A2|B)=P(A1|B)+P(A2|B) |
C.P(A1![]() |
D.![]() |
甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止.设甲在每局中获胜的概率为
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(1)求
的值;
(2)设
表示比赛停止时已比赛的局数,求随机变量
的分布列和数学期望
.


(1)求

(2)设



学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为
,桂花的成活率为
,假设每棵树成活与否是相互独立的.求:
(Ⅰ)两种树各成活一株的概率;
(Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.


(Ⅰ)两种树各成活一株的概率;
(Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.
若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A.[0,0.9] | B.[0.1,0.9] | C.(0,0.9] | D.[0,1] |
利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品为20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A=“是一等品”,B=“是合格品”,C=“是不合格品”,则下列结果错误的是( )
A.P(B)=![]() |
B.P(A∪B)=![]() |
C.P(A∩B)=0 |
D.P(A∪B)=P(C) |
如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.

(1)求此人到达当日空气质量重度污染的概率;
(2)设
是此人停留期间空气重度污染的天数,求
的分布列与数学期望.

(1)求此人到达当日空气质量重度污染的概率;
(2)设

