- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算频率
- 辨析概率与频率的关系
- + 用频率估计概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司在过去几年内使用某种型号的灯管1 000根,该公司对这些灯管的使用寿命(单位:h)进行了统计,统计结果如表所示:
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计该种型号灯管的使用寿命不足1500 h的概率.
分组 | ![]() | ![]() | ![]() | ![]() |
频数 | 48 | 121 | 208 | 223 |
频率 | | | | |
分组 | ![]() | ![]() | ![]() | |
频数 | 193 | 165 | 42 | |
频率 | | | | |
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计该种型号灯管的使用寿命不足1500 h的概率.
下列正确的结论是( )
A.事件A的概率![]() ![]() |
B.如![]() ![]() |
C.灯泡的合格率是![]() ![]() |
D.如![]() ![]() |
实践中常采用“捉-放-捉”的方法估计一个鱼塘中鱼的数量。如从这个鱼塘中随机捕捞出100条鱼,将这100条鱼分别作一记号后再放回鱼塘,数天后再从鱼塘中随机捕捞出108条鱼,其中有记号的鱼有9条,从而可以估计鱼塘中的鱼有_________条
从甲、乙两名射击运动员中选一名参加全国射击比赛,已知选拨赛中,甲射击30次,命中15次;乙射击40次,命中18次.你认为应选谁参加比赛?
对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号)_________________ .
利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示.若从这120个正整数中任意取出一个,设其最高位数字为
的概率为
.下列选项中,最难反映
与
的关系是()






A.![]() | B.![]() | C.![]() | D.![]() |
一个不透明的袋子中装有
个形状相同的小球,分别标有不同的数字
,现从袋中随机摸出
个球,并计算摸出的这
个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验.记
事件为“数字之和为
”.试验数据如下表:

(1)如果试验继续下去,根据上表数据,出现“数字之和为
”的频率将稳定在它的概率附近.试估计“出现数字之和为
”的概率,并求
的值;
(2)在(1)的条件下,设定一种游戏规则:每次摸
球,若数字和为
,则可获得奖金
元,否则需交
元.某人摸球
次,设其获利金额为随机变量
元,求
的数学期望和方差.







(1)如果试验继续下去,根据上表数据,出现“数字之和为



(2)在(1)的条件下,设定一种游戏规则:每次摸







从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( )
A.次品率小于10% | B.次品率大于10% |
C.次品率等于10% | D.次品率接近10% |
某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵孵出8 513条鱼苗,根据概率的统计定义解答下列问题:
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化出多少条鱼苗?
(1)这种鱼卵的孵化概率(孵化率)是多少?
(2)30 000个鱼卵大约能孵化出多少条鱼苗?