- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算频率
- 辨析概率与频率的关系
- + 用频率估计概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.
管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出100条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有______条鱼.
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.
(2)能否在犯错误的概率不超过百分之一的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
| 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.
(2)能否在犯错误的概率不超过百分之一的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm),将数据分组如下表:
(1)请将上表补充完整;
(2)已知标准乒乓球的直径为
,试估计这批乒乓球的直径误差不超过
的概率.
分组 | 频数 | 频率 |
![]() | 10 | |
![]() | 20 | |
![]() | 50 | |
![]() | 20 | |
合计 | 100 | |
(1)请将上表补充完整;
(2)已知标准乒乓球的直径为


2018年,“倡导全民阅读”第五次写入政府工作报告,某省示范性高中为响应政府号召,启动了“全民阅读,书香校园”活动,在活动期间用简单随机抽样方法,抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,所得数据的茎叶图如图所示.将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,试估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
①共有多少种不同的抽取方法?
②求抽取的男、女两位“读书迷”月均课外阅读时间相差不超过2小时的概率.

(1)将频率视为概率,试估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
①共有多少种不同的抽取方法?
②求抽取的男、女两位“读书迷”月均课外阅读时间相差不超过2小时的概率.
某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________.

为了解某种产品的质量,从一大批产品中抽出若干批进行质量检查,结果如下:
(1)计算各批产品中优等品的频率,把上表补充完整;
(2)从这一大批产品中随机抽取1个,则抽到优等品的概率约是多少?
抽取个数![]() | 50 | 100 | 200 | 500 | 1000 | 2000 |
优等品数![]() | 45 | 92 | 194 | 470 | 954 | 1902 |
优等品频率![]() | | | | | | |
(1)计算各批产品中优等品的频率,把上表补充完整;
(2)从这一大批产品中随机抽取1个,则抽到优等品的概率约是多少?
对一批产品的长度(单位:mm)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间
内的为一等品,在区间
或
内的为二等品,在区间
或
内的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则该件产品为二等品的概率为____________.






某盒子中有若干白色的围棋子,为了估计其中围棋子的数目,小明将100颗黑色的围棋子放入了其中,充分搅拌后随机抽出了30颗,数得其中有6颗黑色的围棋子,试根据这些信息估计白色围棋子的数目.
在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:
(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(Ⅱ)用表中数据画出散点图易发现历史成绩
与语文成绩
具有较强的线性相关关系,求
与
的线性回归方程(系数精确到0.1).
参考公式:回归直线方程是
,其中
,
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 |
语文成绩![]() | 60 | 70 | 74 | 90 | 94 | 110 |
历史成绩![]() | 58 | 63 | 75 | 79 | 81 | 88 |
(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(Ⅱ)用表中数据画出散点图易发现历史成绩




参考公式:回归直线方程是


