- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛掷3枚质地均匀的硬币,若
{既有正面向上又有反面向上},
{至多有1枚反面向上},则A与B( )


A.是互斥事件 | B.是对立事件 | C.是相互独立事件 | D.不是相互独立事件 |
若事件A,B发生的概率都大于零,则( )
A.如果A,B是互斥事件,那么A与![]() |
B.如果A,B不是相互独立事件,那么它们一定是互斥事件 |
C.如果A,B是相互独立事件,那么它们一定不是互斥事件 |
D.如果![]() |
设进入某商场的每一位顾客购买甲种商品的概率都为0.5,购买乙种商品的概率都为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的,求:
(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;
(2)进入商场的1位顾客,购买甲、乙两种商品中的一种的概率;
(3)进入商场的1位顾客,至少购买甲、乙两种商品中的一种的概率.
(1)进入商场的1位顾客,甲、乙两种商品都购买的概率;
(2)进入商场的1位顾客,购买甲、乙两种商品中的一种的概率;
(3)进入商场的1位顾客,至少购买甲、乙两种商品中的一种的概率.
一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的信息,时间是从某年的5月1日到下一年的4月30日,发现共有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率近似为_______.
在一次掷硬币试验中,掷30000次,其中有14984次正面朝上,则出现正面朝上的频率近似是_____,据此,掷一枚硬币,正面朝上的概率是_________.
一个射击手进行一次射击,设事件A表示“命中的环数大于7环”;事件B表示“命中的环数为10环”;事件C表示“命中的环数小于6环”;事件D表示“命中的环数为6,7,8,9,10环”.判断下列各对事件是不是互斥事件,是不是对立事件,并说明理由.
(1)事件A与B;
(2)事件A与C;
(3)事件C与D.
(1)事件A与B;
(2)事件A与C;
(3)事件C与D.