- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为
,数学为
,英语为
,问一次考试中
(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少



(Ⅰ)三科成绩均未获得第一名的概率是多少?
(Ⅱ)恰有一科成绩未获得第一名的概率是多少
一袋中装有除颜色外完全相同的5个白球,3个黄球,从中有放回地摸球,用
表示第一次摸得黄球,
表示第二次摸得白球,则事件
与
( )




A.是相互独立事件 | B.不是相互独立事件 | C.是互斥事件 | D.是对立事件 |
袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸得白球”,如果“第二次摸得白球”记为B,“第二次摸得黑球”记为C,那么事件A与B,A与C间的关系是( )
A.A与B,A与C均相互独立 | B.A与B相互独立,A与C互斥 |
C.A与B,A与C均互斥 | D.A与B互斥,A与C相互独立 |
某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:
(1)若获奖人数不超过2人的概率为0.56,求x的值;
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
获奖人数 | 0 | 1 | 2 | 3 | 4 | 5 |
概率 | 0.1 | 0.16 | x | y | 0.2 | z |
(1)若获奖人数不超过2人的概率为0.56,求x的值;
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
盒子里有大小和质地均相同的6个红球和4个白球现从中任取3个球,设事件
{3个球中有1个红球2个白球},事件
{3个球中有2个红球、1个白球},事件
{3个球中至少有1个红球},事件
{3个球中既有红球又有白球}.
(1)事件D与A,B是什么运算关系?
(2)事件C与A的交事件是什么事件?




(1)事件D与A,B是什么运算关系?
(2)事件C与A的交事件是什么事件?