- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 求二项展开式
- + 二项展开式的应用
- 求二项展开式的第k项
- 多项式的展开式
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
记
.
(1)求方程
的实数根;
(2)设
,
,
均为正整数,且
为最简根式,若存在
,使得
可唯一表示为
的形式
,试求椭圆
的焦点坐标;
(3)已知
,是否存在
,使得
成立,若存在,试求出
的值;若不存在,请说明理由.


(1)求方程

(2)设









(3)已知




利用展开式
(n∈N*)回答下列问题:
(Ⅰ)求(1+2x)10的展开式中x4的系数;
(Ⅱ)通过给a,b以适当的值,将下式化简:
;
(Ⅲ)把(Ⅱ)中化简后的结果作为an,求
的值.

(Ⅰ)求(1+2x)10的展开式中x4的系数;
(Ⅱ)通过给a,b以适当的值,将下式化简:

(Ⅲ)把(Ⅱ)中化简后的结果作为an,求

已知数列
的前
项和
,且
.
(1)求数列
的通项公式;
(2)已知定理:“若函数
在区间
上是凹函数,
,且
存在,则有
”.若且函数
在
上是凹函数,试判断
与
的大小;
(3)求证:
.




(1)求数列

(2)已知定理:“若函数









(3)求证:

(1)在等差数列
和等比数列
中,
,是否存在正整数
,使得数列
的所有项都在数列
中,若存在,求出所有的
,若不存在,说明理由;
(2)已知当
时,有
,根据此信息,若对任意
,都有
,求
的值







(2)已知当




