- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分类加法计数原理
- + 两个计数原理的综合应用
- 实际问题中的计数问题
- 代数中的计数问题
- 几何计数问题
- 数字排列问题
- 涂色问题
- 其他计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某科研小组有20个不同的科研项目,每年至少完成一项。有下列两种完成所有科研项目的计划:
A计划:第一年完成5项,从第一年开始,每年完成的项目不得少于次年,直到全部完成为止;
B计划:第一年完成项数不限,从第一年开始,每年完成的项目不得少于次年,恰好5年完成所有项目。
那么,按照A计划和B计划所安排的科研项目不同完成顺序的方案数量
A计划:第一年完成5项,从第一年开始,每年完成的项目不得少于次年,直到全部完成为止;
B计划:第一年完成项数不限,从第一年开始,每年完成的项目不得少于次年,恰好5年完成所有项目。
那么,按照A计划和B计划所安排的科研项目不同完成顺序的方案数量
A.按照A计划完成的方案数量多 |
B.按照B计划完成的方案数量多 |
C.按照两个计划完成的方案数量一样多 |
D.无法判断哪一种计划的方案数量多 |
要对如图所示的四个部分进行着色,要求相邻的两块不能用同一种颜色,现有五种不同的颜色可供选择,则共有_______种不同的着色方法.(用数字作答)
① | ② | ④ |
③ |
从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有( )
A.140种 | B.84种 | C.70种 | D.35种 |
如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()


A.72种 | B.48种 | C.24种 | D.12种 |
一个三位自然数百位,十位,个位上的数字依次为
,当且仅当
时称为“凹数”(如213),若
,且
互不相同,则这个三位数为“凹数”的有( )个




A.8 | B.7 | C.6 | D.9 |
数学与自然、生活相伴相随,无论是蜂的繁殖规律,树的分枝,还是钢琴音阶的排列,当中都蕴含了一个美丽的数学模型Fibonacci(斐波那契数列):1,1,2,3,5,8,13,21…,这个数列前两项都是1,从第三项起,每一项都等于前面两项之和,请你结合斐波那契数列,尝试解答下面的问题:小明走楼梯,该楼梯一共8级台阶,小明每步可以上一级或二级,请问小明的不同走法种数是( )
A.20 | B.34 | C.42 | D.55 |