- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分类加法计数原理
- + 两个计数原理的综合应用
- 实际问题中的计数问题
- 代数中的计数问题
- 几何计数问题
- 数字排列问题
- 涂色问题
- 其他计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
5名运动员参加一次乒乓球比赛,每
名运动员都赛
场并决出胜负.设第
位运动员共胜
场,负
场(
),则错误的结论是( )






A.![]() |
B.![]() |
C.![]() |
D.![]() |
以下问题最终结果用数字表示
(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?
(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?
(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?
(1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?
(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?
(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?
某电商为某次活动设计了“和谐”、“爱国”、“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同
员工甲按规定依次点击了4次,直到第4次才获奖
则他获得奖次的不同情形种数为





A.9 | B.12 | C.18 | D.24 |
已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求
.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求

某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )
A.48 | B.72 | C.84 | D.168 |
如图所示,将
方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,称他们的公共边为“分割边”,则分割边条数的最小值为( )



A.33 | B.56 | C.64 | D.78 |
用0, 1, 2, 3, 4, 5这六个数字, 可以组成______ 个无重复数字的三位数, 也可以组成______ 个能被5整除且无重复数字的五位数.
某班级有6名同学去报名参加校学生会的4项社团活动。若甲,乙两位同学不参加同一社团,每个社团都有人参加,每个人只参加一个社团,则不同的报名方案数为
A.2160 | B.1320 | C.2400 | D.4320 |
某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )
A.600 | B.812 | C.1200 | D.1632 |