- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 分类加法计数原理
- + 两个计数原理的综合应用
- 实际问题中的计数问题
- 代数中的计数问题
- 几何计数问题
- 数字排列问题
- 涂色问题
- 其他计数模型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位( )
A.85 | B.49 | C.56 | D.28 |
6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次, 进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了 13次交换,则收到4份纪念品的同学人数为( )
A.2或4 | B.1或4 | C.2或3 | D.1或3 |
某市医疗保险实行定点医疗制度,按照“就近就医、方便管理” 的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有
三家社区医院,并且他们的选择是等可能的、相互独立的.
(1)求甲、乙两人都选择
社区医院的概率;
(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设在4名参加保险人员中选择
社区医院的人数为
,求
的分布列和数学期望及方差.

(1)求甲、乙两人都选择

(2)求甲、乙两人不选择同一家社区医院的概率;
(3)设在4名参加保险人员中选择



从4台甲型和5台乙型电脑中任意取出3台,其中至少要有甲型和乙型电脑各一台,则不同的取法有 ( )
A.140种 | B.84种 | C.70种 | D.35种 |
如果一个数含有正偶数个数字8,就称它为“优选数”(如
等),否则就称它为“非优选数”,从由数字
,共10个数字组成的四位数中任意抽取10个数,随机变量X表示抽到的“优选数”的个数,则
=__________.



已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.
(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?
(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4000大的自然数?
(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?
(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4000大的自然数?
上合组织峰会将于2018年6月在青岛召开,组委会预备在会议期间将
这五名工作人员分配到两个不同的地点参与接待工作.若要求
必须在同一组,且每组至少2人,则不同分配方法的种数为__________.

