- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 完善列联表
- + 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为
.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
参考公式及数据:K2=
.

| 优秀 | 非优秀 | 总计 |
甲班 | 10 | | |
乙班 | | 30 | |
合计 | | | |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式及数据:K2=

国家规定,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品硏究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为
.
(1)求
列联表中的数据p,q,
,
的值;
(2)能否有
把握认为注射此种疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率. 附:
.
| 未感染病毒 | 感染病毒 | 总计 |
未注射疫苗 | 40 | p | x |
注射疫苗 | 60 | q | y |
总计 | 100 | 100 | 200 |
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为

(1)求



(2)能否有

(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只进行病例分析,然后从这五只小白鼠中随机抽取3只对注射疫苗情况进行核实,求至少抽到2只为未注射疫苗的小白鼠的概率. 附:

![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取
件产品作为样本称出它们的重量(单位:克),重量值落在
的产品为合格品,否则为不合格品.表
是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
表
:甲流水线样本频数分布表

(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取
件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面
列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

参考公式:
其中
临界值表供参考:




表


(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取



参考公式:




假设有两个变量
与
的
列联表如下表:
对于以下数据,对同一样本能说明
与
有关系的可能性最大的一组为( )



| ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
对于以下数据,对同一样本能说明


A.![]() ![]() ![]() ![]() | B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() | D.![]() ![]() ![]() ![]() |
为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1 000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.
(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:
(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?

(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:
| 合格品数/件 | 次品数/件 | 总数/件 |
甲在现场 | 990 | | |
甲不在现场 | | 10 | |
总数/件 | | | |
(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响某校随机抽取200名学生,对学习成绩和学案使用程度进行了调查,统计数据如下表所示:
已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
参考公式:
,其中
.
(I)完成
列联表(不用写计算过程);
(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
| 善于使用学案 | 不善于使用学案 | 合计 |
学习成绩优秀 | 40 | | |
学习成绩一般 | | 30 | |
合计 | | | 200 |
已知随机抽查这200名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
参考公式:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(I)完成

(Ⅱ)试运用独立性检验的思想方法分析有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:
| 专业A | 专业B | 合计 |
女生 | 12 | | |
男生 | | 46 | 84 |
合计 | 50 | | 100 |
如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )
注:

P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A.0.005 | B.0.01 | C.0.025 | D.0.05 |