- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 完善列联表
- + 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校为了解学生假期参与志愿服务活动的情况,随机调查了
名男生,
名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
(1)能否有
的把握认为该校学生一周参与志愿服务活动时间是否超过
小时与性别有关?
(2)以这
名学生参与志愿服务活动时间超过
小时的频率作为该事件发生的概率,现从该校学生中随机抽查
名学生,试估计这
名学生中一周参与志愿服务活动时间超过
小时的人数.
附:



| 超过![]() | 不超过![]() |
男 | ![]() | ![]() |
女 | ![]() | ![]() |
(1)能否有


(2)以这





附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式
其中
)
| 患心肺疾病 | 不患心肺疾病 | 合计 |
男 | | 5 | |
女 | 10 | | |
合计 | | | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为

(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式


为推进“千村百镇计划”,
年
月某新能源公司开展“电动莆田 绿色出行”活动,首批投放
台
型新能源车到莆田多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对
型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为
分).最后该公司共收回
份评分表,现从中随机抽取
份(其中男、女的评分表各
份)作为样本,经统计得到如下茎叶图:

(1)求
个样本数据的中位数
;
(2)已知
个样本数据的平均数
,记
与
的最大值为
.该公司规定样本中试用者的“认定类型”:评分不小于
的为“满意型”,评分小于
的为“需改进型”.
①请根据
个样本数据,完成下面
列联表:

根据
列联表判断能否有
的把握认为“认定类型”与性别有关?
②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为
,求
的分布列及数学期望.










(1)求


(2)已知







①请根据



根据


②为做好车辆改进工作,公司先从样本“需改进型”的试用者按性别用分层抽样的方法,从中抽取8人进行回访,根据回访意见改进车辆后,再从这8人中随机抽取3人进行二次试用,记这3人中男性人数为



某花圃为提高某品种花苗质量,开展技术创新活动,在
,
实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在
,
试验地随机抽选各
株,对每株进行综合评分(评分的高低反映花苗品质的高低),将每株所得的综合评分制成如图所示的频率分布直方图:

(1)求图中
的值,并求综合评分的中位数;
(2)记综合评分为
及以上的花苗为优质花苗.填写下面的列联表,并判断是否有
的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:
,其中
.)






(1)求图中

(2)记综合评分为


| 优质花苗 | 非优质花苗 | 合计 |
甲培育法 | ![]() | | |
乙培育法 | | ![]() | |
合计 | | | |
附:下面的临界值表仅供参考.
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式:


某高级中学为调查学生选科情况,从高一学生中随机抽取40名男生和20名女生进行调查,得到如下列联表:
(1)分别估计男生中选择理科、女生中选择文科的概率;
(2)能否有99.9%的把握认为学生选择理科或文科与性别有关?
参考公式:
,其中
.
| 选理科 | 选文科 |
男生(单位:名) | 35 | 5 |
女生(单位:名) | 5 | 15 |
(1)分别估计男生中选择理科、女生中选择文科的概率;
(2)能否有99.9%的把握认为学生选择理科或文科与性别有关?
参考公式:


![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的
,女生喜欢抖音的人数占女生人数
,若有
的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人
附表:
附:



附表:
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
附:

A.![]() | B.![]() | C.![]() | D.![]() |
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在
岁到
岁的人群中随机调查了
人,并得到如图所示的频率分布直方图,在这
人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这
人年龄的平均数;(写出必要的表达式)
(2)根据以上统计数据补全下面的
列联表,据此表,能否在犯错误的概率不超过
的前提下,认为以
岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
附:临界值表、公式





年龄 | 不支持“延迟退休年龄政策”的人数 |
![]() | 15 |
![]() | 5 |
![]() | 15 |
![]() | 23 |
![]() | 17 |

(1)由频率分布直方图,估计这

(2)根据以上统计数据补全下面的



| ![]() | ![]() | 总计 |
不支持 | | | |
支持 | | | |
总计 | | | |
附:临界值表、公式
![]() | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

在一次独立性检验中,得出列联表如图:且最后发现,两个分类变量A和B没有任何关系,则a的可能值是( )
| A | ![]() | 合计 |
B | 200 | 800 | 1000 |
![]() | 180 | a | 180+a |
合计 | 380 | 800+a | 1180+a |
A.200 | B.720 | C.100 | D.180 |