某部门为了解人们对“延迟退休年龄政策”的支持度,随机调查了人,其中男性人.调查发现持不支持态度的有人,其中男性占.分析这个持不支持态度的样本的年龄和性别结构,绘制等高条形图如图所示.

(1)在持不支持态度的人中,周岁及以上的男女比例是多少?
(2)调查数据显示,个持支持态度的人中有人年龄在周岁以下.填写下面的列联表,问能否有的把握认为年龄是否在周岁以下与对“延迟退休年龄政策”的态度有关.

参考公式及数据:
当前题号:1 | 题型:解答题 | 难度:0.99
某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计,其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:
 
(1)根据以上两个直方图完成下面的列联表:
成绩
性别
优秀
不优秀
合计
男生
 
 
 
女生
 
 
 
总计
 
 
 
 
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?

2.072
2.706
3.841
5.024
6.635
7.879
10.828

0.15
0.10
0.05
0.025
0.010
0.005
0.001
 
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:
空气污染指数
(0,50]
(50,100]
(100,150]
(150,200]
(200,300]
(300,+∞)
空气质量等级


轻度污染
中度污染
重度污染
严重污染
 
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中m的值;
(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
空气质量


轻度污染
中度污染
重度污染
严重污染
天数
11
27
11
7
3
1
 
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
 
空气质量优、良
空气质量污染
总计
限行前
 
 
 
限行后
 
 
 
总计
 
 
 
 
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中.
当前题号:3 | 题型:解答题 | 难度:0.99
几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄






受访人数
5
6
15
9
10
5
支持发展

共享单车人数

4
5
12
9
7
3
 
(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
 
年龄低于35岁
年龄不低于35岁
合计
支持
 
 
 
不支持
 
 
 
合计
 
 
 
 
(Ⅱ)若对年龄在的被调查人中各随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为,求随机变量的分布列及数学期望.
参考数据:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中
当前题号:4 | 题型:解答题 | 难度:0.99
为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.

(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于两个试验区,部分数据如下列联表:
 
试验区
试验区
合计
优质树苗
 
20
 
非优质树苗
60
 
 
合计
 
 
 
 
将列联表补充完整,并判断是否有的把握认为优质树苗与两个试验区有关系,并说明理由.
下面的临界值表仅供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:5 | 题型:解答题 | 难度:0.99
某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现,在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元,现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据200个一级过滤器更换的滤芯个数制成的柱状图,表是根据100个二级过滤器更换的滤芯个数制成的频数分布表:

二级滤芯更换频数分布表:
二级滤芯更换的个数
5
6
频数
60
40
 
以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;
(2)记表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求的分布列及数学期望;
(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.
当前题号:6 | 题型:解答题 | 难度:0.99
为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)
分数
[80,90)
[90,100)
[100,110)
[110,120)
[120,130)
[130,140)
[140,150]
甲班频数
1
1
4
5
4
3
2
乙班频数
0
1
1
2
6
6
4
 
(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?
 
甲班
乙班
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.
参考公式:,其中
临界值表
P(
0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
 
满意
不满意
男顾客
40
10
女顾客
30
20
 
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:
PK2k
0.050
0.010
0.001
k
3.841
6.635
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60人.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
下面临界值表供参考:
P(K2≥k)
0.10
0.05
0.010
0.001
k
2.706
3.841
6.635
10.828
 
(参考公式:K2=
当前题号:9 | 题型:解答题 | 难度:0.99
已知学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学). 现用分层抽样方法(按A类、B类分两层)从该年级学生中共抽查100名同学,测得这100名同学的身高(单位:)频率分布直方图如图:

(Ⅰ)以同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表,计算这100名学生身高数据的平均值;
(Ⅱ)如果以身高不低于作为达标的标准,对抽取的100名学生,得到以下列联表:
 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
 
完成上表,并判断是否有的把握认为体育锻炼与身高达标有关系(值精确到0.01)?
参考公式:
参考数据:










 
当前题号:10 | 题型:解答题 | 难度:0.99