- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由中央电视台综合频道
和唯众传媒联合制作的
开讲啦
是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了A、B两个地区的100名观众,得到如表的
列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为
.
完成上述表格并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系;
若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望.
附:参考公式:
.





| 非常满意 | 满意 | 合计 |
A | 30 | 15 | |
B | | | |
合计 | | | |



![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
附:参考公式:

北京联合张家口获得2022年第24届冬奥会举办权,我国各地掀起了发展冰雪运动的热潮,现对某高中的学生对于冰雪运动是否感兴趣进行调查,该高中男生人数是女生的1.2倍,按照分层抽样的方法,从中抽取110人,调查高中生“是否对冰雪运动感兴趣”得到如下列联表:
(1)补充完成上述
列联表;
(2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.
附:
(其中
).
| 感兴趣 | 不感兴趣 | 合计 |
男生 | 40 | | |
女生 | | 30 | |
合计 | | | 110 |
(1)补充完成上述

(2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.
附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:

| 非体育迷 | 体育迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:

P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
近来天气变化无常,陡然升温、降温幅度大于
的天气现象出现增多.陡然降温幅度大于
容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的
名幼儿进行调查,得到了如下的列联表,若在全部
名幼儿中随机抽取
人,抽到患伤风感冒疾病的幼儿的概率为
,
(1)请将下面的列联表补充完整;
(2)能否在犯错误的概率不超过
的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的
名女性幼儿中,有
名又患黄痘病.现在从患伤风感冒疾病的
名女性中,选出
名进行其他方面的排查,记选出患黄痘病的女性人数为
,求
的分布列以及数学期望.下面的临界值表供参考:
参考公式:
,其中






(1)请将下面的列联表补充完整;
| 患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 |
男 | | 25 | |
女 | 20 | | |
合计 | | | 100 |
(2)能否在犯错误的概率不超过

(3)已知在患伤风感冒疾病的






![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各
名,将男性、女性使用微信的时间分成
组:
,
,
,
,
分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图,估计女性使用微信的平均时间;
(2)若每天玩微信超过
小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成
的列联表,并判断是否有
的把握认为“微信控”与“性别”有关?
参考公式:
,其中
.
参考数据:








(1)根据女性频率分布直方图,估计女性使用微信的平均时间;
(2)若每天玩微信超过



参考公式:


参考数据:

某市在争创文明城市过程中,为调查市民对文明出行机动车礼让行人的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄段与是否支持文明出行机动车礼让行人有关?
(3)已知在被调查的年龄小于25岁的支持者有5人,其中2人是教师,现从这5人中随机抽取3人,求至多抽到1位教师的概率.
| 支持 | 不支持 | 合计 |
年龄不大于45岁 | | | 80 |
年龄大于45岁 | 10 | | |
合计 | | 70 | 100 |
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄段与是否支持文明出行机动车礼让行人有关?
(3)已知在被调查的年龄小于25岁的支持者有5人,其中2人是教师,现从这5人中随机抽取3人,求至多抽到1位教师的概率.
随着中国教育改革的不断深入,越来越多的教育问题不断涌现.“衡水中学模式”入驻浙江,可以说是应试教育与素质教育的强烈碰撞.这一事件引起了广大市民的密切关注.为了了解广大市民关注教育问题与性别是否有关,记者在北京,上海,深圳随机调查了100位市民,其中男性55位,女性45位.男性中有45位关注教育问题,其余的不关注教育问题;女性中有30位关注教育问题,其余的不关注教育问题.
(1)根据以上数据完成下列2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:
,其中
.
(1)根据以上数据完成下列2×2列联表;
| 关注教育问题 | 不关注教育问题 | 合计 | |||||
女 | 30 | | 45 | |||||
男 | 45 | | 55 | |||||
合计 | ![]() | | 100 | |||||
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |||
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | |||
|
(2)能否在犯错误的概率不超过0.025的前提下认为是否关注教育与性别有关系?
参考公式:


某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
购买金额(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成


| 不少于60元 | 少于60元 | 合计 |
男 | | 40 | |
女 | 18 | | |
合计 | | | |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为



附:参考公式和数据:


附表:
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
![]() | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

| 不患胃病 | 患胃病 | 总计 |
生活有规律 | 60 | 40 | |
生活无规律 | | 60 | 100 |
总计 | 100 | | |
(1)补全列联表中的数据;
(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:

![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式:
,其中
)
| 喜好体育运动 | 不喜好体育运动 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 60 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

