某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?
(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
 


总计
男生身高
 
 
 
女生身高
 
 
 
总计
 
 
 
 
(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.
参考公式:
参考数据:

0.025
0.010
0.005
0.001

5.024
6.635
7.879
10.828
 
当前题号:1 | 题型:解答题 | 难度:0.99
垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于项的称为“比较了解”少于三项的称为“不太了解”调查结果如下:
 






项以上
男生(人)







女生(人)







 
(1)完成如下列联表并判断是否有的把握认为了解垃圾分类与性别有关?
 
比较了解
不太了解
合计
男生
________
________
________
女生
________
________
________
合计
________
________
________
 
(2)抽取的名高中生中按照男、女生采用分层抽样的方法抽取人的样本.
(i)求抽取的女生和男生的人数;
(ii)从人的样本中随机抽取两人,求两人都是女生的概率.
参考数据:










 
.
当前题号:2 | 题型:解答题 | 难度:0.99
某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成.该省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.下面是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的2×2列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”? 

(2)利用分层抽样从持“不赞成”意见家长中抽取5名参加学校交流活动,从中选派2名家长发言,求恰好有1名城镇居民的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500以上为常喝,体重超过50为肥胖.
 
常喝
不常喝
合计
肥胖
 
2
 
不肥胖
 
18
 
合计
 
 
30
 
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:4 | 题型:解答题 | 难度:0.99
在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的.

(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与村落有关:
 
甲村
乙村
总计
绝对贫困户
 
 
 
相对贫困户
 
 
 
总计
 
 
 
 
(2)某干部决定在这两村贫困指标处于的贫困户中,随机选取户进行帮扶,用表示所选户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.










 
当前题号:5 | 题型:解答题 | 难度:0.99
司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(1)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望EX).
参考公式与数据:,其中n=a+b+c+d
当前题号:6 | 题型:解答题 | 难度:0.99
为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:

0.50
0.40
0.25
0.15
0.10
0.05

0.455
0.708
1.323
2.072
2.706
3.841
 
当前题号:7 | 题型:解答题 | 难度:0.99
某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
 
同意
不同意
合计
男生
a
5
 
女生
40
d
 
合计
 
 
100
 
(1)求 ad 的值;
(2)根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
附:

0.15
0.100
0.050
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 
当前题号:8 | 题型:解答题 | 难度:0.99
某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元)






人数
10
15
20
15
20
10
 
(1)求购买金额不少于45元的频率;
(2)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
 
不少于60元
少于60元
合计

 
40
 

18
 
 
合计
 
 
 
 
附:参考公式和数据:.
附表:

2.072
2.706
3.841
6.635
7.879

0.150
0.100
0.050
0.010
0.005
 
当前题号:9 | 题型:解答题 | 难度:0.99