- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:

(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
独立性检验统计量
其中

(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量


心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取
名同学(男
人,女
人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):

(1)能否据此判断有
的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的
名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为
,求
的分布列和
.
附表及公式:





| 几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
| 几何题 | 代数题 | 总计 |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有

(2)现从选择做几何题的




附表及公式:


随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取
人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的
人中的性别以及意见进行了分类,得到的数据如下表所示:

(Ⅰ)根据表中的数据,能否在犯错的概率不超过
的前提下,认为对共享产品的态度与性别有关系?
(Ⅱ)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取
人,再从
人中随机抽取
人赠送超市购物券作为答谢,求恰有
人是女性的概率.
参考公式:
.
临界值表:



(Ⅰ)根据表中的数据,能否在犯错的概率不超过

(Ⅱ)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取




参考公式:

临界值表:

某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由
并参照附表,得到的正确结论是( )



A.在犯错误的概率不超过![]() |
B.在犯错误的概率不超过![]() |
C.有![]() |
D.有![]() |
“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额
(百元)的频率分布直方图如图所示:
(1)求网民消费金额
的中位数
;
(2)把下表中空格里的数填上,能否有
的把握认为网购消费与性别有关;
(3)将(2)中的频率当作概率,电子商务平台从该市网民中随机抽取10人赠送电子礼金,求这10人中女性的人数
的数学期望.

附表:
.

(1)求网民消费金额


(2)把下表中空格里的数填上,能否有

(3)将(2)中的频率当作概率,电子商务平台从该市网民中随机抽取10人赠送电子礼金,求这10人中女性的人数


| 男 | 女 | 合计 |
![]() | | | |
![]() | | 30 | |
合计 | 45 | | |
附表:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:

(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的
列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?

(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有
人,超过210千卡的有
人,设
,求
的分布列及数学期望.
附:
,其中
.
参考数据:

(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的


(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有




附:


参考数据:
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
为考察高中生的性别与喜欢数学课程之间的关系,运用2×2列联表进行检验,经计算K2=7.069,参考下表,则认为“性别与喜欢数学有关”犯错误的概率不超过( )
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A.0.1% | B.1% | C.99% | D.99.9% |
宜昌市拟在2020年点军奥体中心落成后申办2022年湖北省省运会,据了解,目前武汉,襄阳,黄石等申办城市因市民担心赛事费用超支而准备相继退出,某机构为调查宜昌市市民对申办省运会的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过
的前提下认为不同年龄与支持申办省运会无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:
,
.
| 支持 | 不支持 | 合计 |
年龄不大于50岁 | | | 80 |
年龄大于50岁 | 10 | | |
合计 | | 70 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附:


![]() | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
A.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误 |
B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病 |
C.若![]() ![]() |
D.以上三种说法均不正确 |
















(1)若把这








(2)培训前组委会用分层抽样调查方式在第













附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |