- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考查某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:

附表:

参照附表,在犯错误的概率不超过 (填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.

附表:

参照附表,在犯错误的概率不超过 (填百分比)的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.
某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.

由表中数据得线性方程
=
+
x中
=﹣2,据此预测当气温为5℃时,用电量的度数约为 .

由表中数据得线性方程




某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(1)求回归直线方程
,其中
;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是
元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

(1)求回归直线方程


(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是

学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:

根据上表可得回归方程
中的
为6,据此模型预测气温为30℃时销售饮料瓶数为( )

根据上表可得回归方程


A.141 | B.191 | C.211 | D.241 |
某连锁经营公司所属的5个零售店某月的销售额和利润额资料如下表:

(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有线性相关关系.用最小二乘法计算利润额y对销售额x的回归直线方程.

(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有线性相关关系.用最小二乘法计算利润额y对销售额x的回归直线方程.
为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

(Ⅰ)完成以上2×2列联表,并估计该地区老年人中需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.

附:
.

(Ⅰ)完成以上2×2列联表,并估计该地区老年人中需要志愿者提供帮助的老年人的比例;
(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.

附:

一次考试中,五名学生的数学、物理成绩如下表

(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)请在所给的直角坐标系中画出它们的散点图,并求出这些数据的线性回归直线方程.
参考公式回归直线的方程是:y=bx+a,
其中对应的回归估计值.b=
,a=
﹣b
.

(1)要在这五名学生中选2名参加一项活动,求选中的同学中至少有一人的物理成绩高于90分的概率.
(2)请在所给的直角坐标系中画出它们的散点图,并求出这些数据的线性回归直线方程.
参考公式回归直线的方程是:y=bx+a,
其中对应的回归估计值.b=




已知x、y的取值如下表,从散点图可以看出y与x线性相关,且回归方程为
=0.7x+a,则a=( )



A.1.25 | B.1.05 | C.1.35 | D.1.45 |