甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
 
优秀
非优秀
总计
甲班
10
 
 
乙班
 
30
 
合计
 
 
105
 
已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99

某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
 
爱看课外书
不爱看课外书
总计
作文水平好
 
 
 
作文水平一般
Z.X.X.K]
 
 
总计
 
 
 
 
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中.
参考数据:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.

(注:独立性检验临界值表参考第9题,K 2.)
当前题号:3 | 题型:填空题 | 难度:0.99
已知之间的几组数据如下表:

1
2
3
4
5
6

0
2
1
3
3
4
 
假设根据上表数据所得线性回归方程为, 某同学根据上表中前两组数据求得的直线方程为, 则以下结论正确的是 ( )
A.B.
C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
已知的取值如下表所示:
x
2
3
4
y
5
4
6
 
如果呈线性相关,且线性回归方程为,则等于( )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某单位为了制定节能减排的目标,先调查了用电量(单位:度)与气温(单位:)之间的关系,随机统计了某天的用电量与当天气温,并制作了对照表:
(单位:)




(单位:度)




 
由表中数据得线性回归方程:.当气温为时,预测用电量约为( )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,
 
患心脏病
未患心脏病
合计
每一晚都打鼾
30
224
254
不打鼾
24
1355
1379
合计
54
1579
1633
 
根据独立性检验原理,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系.
提示
P(K2≥k)
0.100
0.050
0.010
 0.001
k
2.706
3.841
6.635
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂:

乙厂:

(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填入答题卡的列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
当前题号:8 | 题型:解答题 | 难度:0.99
某同学在研究性学习中,收集到某制药厂车间工人数(单位:十人)与药品产量(单位:万盒)的数据如表所示:
工人数:x(单位:十人)
1
2
3
4
药品产量:y(单位:万盒)
3
4
5
6
 
(1)请画出如表数据的散点图;
(2)参考公式,根据表格提供的数据,用最小二乘法求出y关于x的线性回归方程y=x+;(参考数据i2=30,xiyi=50)
(3)试根据(2)求出的线性回归方程,预测该制药厂车间工人数为45时,药品产量是多少?
当前题号:9 | 题型:解答题 | 难度:0.99
某种产品的质量以其质量指标值衡量,质量指标值大于或等于98且小于106的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表

(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)由以上统计数据填写22列联表,问是否有的把握认为“A配方与B配方的质量有差异”
当前题号:10 | 题型:解答题 | 难度:0.99