- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某城市理论预测2020年到2024年人口总数与年份的关系如下表所示:
(1)请在右面的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
(参考公式:
,
)
年份202x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请在右面的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
(参考公式:


某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10万元时,销售额为多少?
附:公式为:
,参考数字:
,
.


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10万元时,销售额为多少?
附:公式为:



为了推广电子支付,某公交公司推出支付宝和微信扫码支付乘车优惠活动,活动期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,现用
表示活动推出第
天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
表1
根据以上数据绘制了散点图.

(1)根据散点图判断,在活动期内,
与
(
,
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据建立
关于
的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)优惠活动结束后,车队对乘客的支付方式进行统计,结果如下
车队为缓解周边居民出行压力,以90万元的单价购进了一批新车,根据以往的经验可知每辆车每个月的运营成本约为0.978万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受6折优惠,有
的概率享受7折优惠,有
的概率享受8折优惠,有
的概率享受9折优惠.预计该车队每辆车每个月有1.5万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要
年才能开始盈利,求
的值.
参考数据:
其中
,
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 6 | 12 | 23 | 34 | 65 | 106 | 195 |
表1
根据以上数据绘制了散点图.

(1)根据散点图判断,在活动期内,






(2)根据(1)的判断结果及表1中的数据建立


(3)优惠活动结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比列 | 10% | 54% | 36% |
车队为缓解周边居民出行压力,以90万元的单价购进了一批新车,根据以往的经验可知每辆车每个月的运营成本约为0.978万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有






参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
63 | 1.55 | 2561 | 50.40 | 3.55 |
其中


参考公式:对于一组数据






下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据

(1)画出散点图,并判断是否线性相关;
(2)求y与x之间的回归方程.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |

(1)画出散点图,并判断是否线性相关;
(2)求y与x之间的回归方程.
假设关于某设备的使用年限x(年)和所支出的维修费用y万元有如下的统计资料:
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
附注:①参考公式:回归方程
中斜率和截距的最小二乘估计分别为
;
②参考数据:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
附注:①参考公式:回归方程


②参考数据:

某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.
(1)请根据上表提供的数据,求出y关于x的线性回归方程
;
(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.
(参考公式:
)
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请根据上表提供的数据,求出y关于x的线性回归方程

(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.
(参考公式:

基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率
进行了统计,结果如表:
请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率
如果不能,请说明理由.
根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元
辆和800元
辆的A,B两款车型,报废年限各不相同
考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:
经测算,平均每辆单车每年可以为公司带来收入500元
不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?
参考数据:
,
,
参考公式:相关系数
回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.

月份 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
月份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |






报废年限 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年可以为公司带来收入500元

参考数据:



参考公式:相关系数

回归直线方程



随着时代的进步,科技的发展,“网购”已发展成为一种新的购物潮流,足不出户就可以在网上买到自己想要的东西,而且两三天就会送到自己的家门口,某网店统计了年至年(年时)在该网店的购买人数(单位:百人)的数据如下表:
(1)依据表中给出的数据,求出
关于
的回归直线方程
(2)根据
中的回归直线方程,预测
年在该网店购物的人数是够有可能破万?
年份![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)依据表中给出的数据,求出


(2)根据


已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃)对某种鸡的时段产蛋量
(单位:
)的影响.为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
其中
,
.

(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,求出
关于
的回归方程;
(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
②参考值.





![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
17.4 | 82.3 | 3.6 | 140 | 9.7 | 2935.1 | 35 |
其中



(1)根据散点图判断,




(2)若用



(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据



②参考值.
![]() | ![]() | ![]() | ![]() | ![]() |
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |