- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线
.(附:回归方程系数公式:
)

(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线


某娱乐网站特别策划“2016年春晚评审活动”,请观众为春晚打分,满分100分,分四项打分,每项25分.评分项目按照“真诚、温暖、振奋、好玩”设置,观众可以根据自己的观感打分.已知某4位观众打的分数分别是80,82,78,72,则分数的方差是________.
甲、乙两位同学进行投篮比赛,每人玩5局.每局在指定线外投篮,若第一次不进,则再投第二次,依此类推,但最多只能投6次.当投进时,该局结束,并记下投篮的次数;当6投不进,该局也结束,记为“×”.第一次投进得6分,第二次投进得5分,第三次投进得4分,依此类推.第6次投不进,得0分.两人的投篮情况如下:
请判断哪位同学投篮的水平较高.
| 第1局 | 第2局 | 第3局 | 第4局 | 第5局 |
甲 | 5次 | × | 4次 | 5次 | 1次 |
乙 | × | 2次 | 4次 | 2次 | × |
请判断哪位同学投篮的水平较高.
下列关于概率和统计的几种说法:
①10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a,b,c的大小关系为c>a>b;
②样本4,2,1,0,-2的标准差是2;
③在面积为S的△ABC内任选一点P,则随机事件“△PBC的面积小于”的概率为
;
④从写有0,1,2,…,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.
其中正确说法的序号有________.
已知数据x1,x2,x3,…,x100是某市100个普通职工2018年8月份的收入(均不超过0.8万元),设这100个数据的中位数为x,平均数为y,方差为z,如果再加上某人2018年8月份的收入x101(约100万元),则相对于x,y,z,这101个数据( )
A.平均数可能不变,中位数可能不变,方差可能不变 |
B.平均数变大,中位数可能不变,方差也不变 |
C.平均数变大,中位数一定变大,方差可能不变 |
D.平均数变大,中位数可能不变,方差变大 |
在黄冈市青年歌手大赛中,七位评委为某选手打出的分数如下:91,89,91,96,94,95,94,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.93,2.8 | B.93,2 | C.94,2.8 | D.94,2 |