- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- + 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列说法中正确的有________
①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型。
①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大
③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型。
气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 ℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.
则肯定进入夏季的地区有________个.
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.
则肯定进入夏季的地区有________个.
下列说法错误的是 ( )
A.如果一组数据的众数是5,那么这组数据中出现次数最多的数是5 |
B.一组数据的平均数一定大于其中每一个数据 |
C.一组数据的平均数、众数、中位数有可能相同 |
D.一组数据的中位数有且只有一个 |
在某次测量中得到的
样本数据如下:82,84,84,86,86,86,88,88,88,88,若
样本数据恰好是
样本数据每个都加2后所得数据,则
两样本的数字特征(众数、中位数、平均数、方差)对应相同的是__________.




在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标准为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例的数据,一定符合该标准的是____.(填序号)
①甲地:总体均值为3,中位数为4
②乙地:总体均值为1,总体方差大于0
③丙地:中位数为2,众数为3
④丁地:总体均值为2,总体方差为3
①甲地:总体均值为3,中位数为4
②乙地:总体均值为1,总体方差大于0
③丙地:中位数为2,众数为3
④丁地:总体均值为2,总体方差为3
据报道,某公司的32名职工的月工资(单位:元)如下:
(1)求该公司职工工资的平均数、中位数、众数.(精确到1元)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数分别是多少?(精确到1元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
职务 | 董事长 | 副董事长 | 董事 | 总经理 | 经理 | 管理 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求该公司职工工资的平均数、中位数、众数.(精确到1元)
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数分别是多少?(精确到1元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
为检验寒假学生自主学习的效果,年级部对某班50名学生各科的检测成绩进行了统计,下面是政治成绩的频率分布直方图,其中成绩分组区间是:
,
,
,
,
,
.

(1)求图中的
值及政治成绩的中位数;
(2)从分数在
中选定6人记为
,
,…,
,从分数在
中选定3人,记为
,
,
,组成一个学习小组.现从这6人和3人中各选1人作为组长,求
被选中且
未被选中的概率.







(1)求图中的

(2)从分数在










汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过
的
型汽车进行惩罚,某检测单位对甲、乙两类
型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:
):
经测算发现,乙类
型品牌汽车二氧化碳排放量的平均值为
.
(Ⅰ)从被检测的5辆甲类
型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过
的概率是多少?
(Ⅱ)求表中
,并比较甲、乙两类
型品牌汽车二氧化碳排放量的稳定性.
,其中,
表示
的平均数,
表示样本数量,
表示个体,
表示方差)

的



甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | ![]() | 100 | 160 |
经测算发现,乙类


(Ⅰ)从被检测的5辆甲类


(Ⅱ)求表中







