- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- + 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表如下,若甲、乙小组的平均成绩分别是X甲,X乙,则下列结论正确的是 ( )


A.X甲>X乙,甲比乙成绩稳定 | B.X甲>X乙,乙比甲成绩稳定 |
C.X甲<X乙,甲比乙成绩稳定 | D.X甲<X乙,乙比甲成绩稳定 |
在一次比赛中,评委为选手打分的分数的茎叶图如图所示,则数据的平均数和众数分别是( )


A.84,84 | B.85,84 | C.84,86 | D.85,85 |
随机抽取某中学甲乙两个班各
名同学,测量他们的身高(单位:
),获得身高数据的茎叶图(中间的数字表示身高的百位、十位,旁边的数字分别表示身高的个位数)如图所示

(I)根据茎叶图判断哪个班的平均身高较高;
(II)计算甲班的样本方差;
(III)现从乙班这
名同学中随机抽取两名身高不低于
的同学,求身高为
的同学被抽中的概率.



(I)根据茎叶图判断哪个班的平均身高较高;
(II)计算甲班的样本方差;
(III)现从乙班这



.如图,是青年歌手大奖赛上9位评委给某位选手打分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ( )


A.85 | B.86 | C.87 | D.88 |
下图是2008年“皇华之春”晚会上,七位评委为某舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )


A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)(理)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
甲 | 82 | 81 | 79 | 78 | 95 | 88 | 93 | 84 |
乙 | 92 | 95 | 80 | 75 | 83 | 80 | 90 | 85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)(理)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
右图是亳州市某中学“庆祝建党90周年演讲比赛”中,12位评委为某位选手打出的分数的茎叶统计图,则去掉一个最高分和一个最低分之后,所剰数据的平均数
为 ,众数为 .
为 ,众数为 .

某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.

(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差
、
,并根据结
果,你认为应该选派哪一个班的学生参加决赛?
(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.

(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差


果,你认为应该选派哪一个班的学生参加决赛?
(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.
如图所示的茎叶图表示甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |