- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随机调查某校
个学生在“六一”儿童节的午餐费,结果如下表:
这
个学生“六一”节午餐费的平均值和方差分别是( )

餐费(元) | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() |
这

A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
如图是
年在某电视节目中七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为( ).



A.![]() | B.![]() | C.![]() | D.![]() |
某省的一个气象站观测点在连续4天里记录的
指数
与当天的空气水平可见度
(单位:
)的情况如下表:

(1)设
,根据上表的数据, 用最小二乘法求出
关于
的线性回归方程;
(附参考公式:
,其中
,
)
参考数据:
(2)根据求出的回归直线方程预
测当
指数
时,当天空气水平的可见度约是多少?





(1)设



(附参考公式:



参考数据:

(2)根据求出的回归直线方程预



某天下班后,车间主任统计了车间不含工人
的40名工人平均每人生产了
个零件,如果把
当成工人
生产的零件数,与原来40名工人每人生产的零件数一起,算出这41名工人平均每人生产了
个零件,那么
为__________.






孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:
(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);
(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 11 | 13 | 8 | 9 | 7 | 8 | 10 |
(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);
(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.
为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在
内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在

“糖尿病”已经成为日渐多发的一种疾病,其具有危害性大且难以完全治愈的特征.为了更好的抑制“糖尿病”多发的势头,某社区卫生医疗机构针对所服务居民开展了免费测血糖活动,将随机抽取的10名居民均分为
,
两组(
组:4.3,5.1,4.6,4.1,4.9;
组:5.1,4.9,4.0,4.0,4.5).
(1)通过提供的数据请判断哪一组居民的血糖值更低;
(2)现从
组的5名居民中随机选取2名,求这2名中至少有1名的血糖值低于4.5的概率.




(1)通过提供的数据请判断哪一组居民的血糖值更低;
(2)现从

某个体服装店经营某种服装在某周内获纯利润y(单位:元)与该周每天销售这种服装件数x之间有如下一组数据:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
已知x
=280,
xiyi=3 487.
(1)求、
;
(2)求纯利润y与每天销售件数x的回归方程;
(3)估计每天销售10件这种服装时,纯利润是多少元.
给出下列四个命题:
①将
,
,
三种个体按3:1:2的比例分层抽样调查,若抽取的
个体为12个,则样本容量为30;
②一组数据1、2、3、4、5的平均数、中位数相同;
③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;
④统计的10个样本数据为95,105,114,116,120,120,122,125,130,134,则样本数据落在
内的频率为0.4.
其中真命题为( )
①将




②一组数据1、2、3、4、5的平均数、中位数相同;
③甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲;
④统计的10个样本数据为95,105,114,116,120,120,122,125,130,134,则样本数据落在

其中真命题为( )
A.①② | B.②③ | C.③④ | D.②④ |