2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:
甲电商:
消费金额(单位:千元)
[0,1)
[1,2)
[2,3)
[3,4)
[4,5]
频数
50
200
350
300
100
 
乙电商:
消费金额(单位:千元)
[0,1)
[1,2)
[2,3)
[3,4)
[4,5]
频数
250
300
150
100
200
 
(Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);

(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;
(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.
当前题号:1 | 题型:解答题 | 难度:0.99
某中学高一期中考试结束后,从高一年级1000名学生中任意抽取50名学生,将这50名学生的某一科的考试成绩(满分150分)作为样本进行统计,并作出样本成绩的频率分布直方图(如图).

(1)由于工作疏忽,将成绩[130,140)的数据丢失,求此区间的人数及频率分布直方图的中位数;(结果保留两位小数)
(2)若规定考试分数不小于120分为优秀,现从样本的优秀学生中任意选出3名学生,参加学习经验交流会.设X表示参加学习经验交流会的学生分数不小于130分的学生人数,求X的分布列及期望;
(3)视样本频率为概率.由于特殊原因,有一个学生不能到学校参加考试,根据以往考试成绩,一般这名学生的成绩应在平均分左右.试根据以上数据,说明他若参加考试,可能得多少分?(每组数据以区问的中点值为代表)
当前题号:2 | 题型:解答题 | 难度:0.99
某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下:
组号
分组
频率
第1组
[160,165)
0.05
第2组
[165,170)
0.35
第3组
[170,175)

第4组
[175,180)
0.20
第5组
[180,185]
0.10
 
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数;
当前题号:3 | 题型:解答题 | 难度:0.99
某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:后得到如下频率分布直方图.
(1)根据频率分布直方图,分别求,众数,中位数.
(2)估计该校高二年级学生期中考试政治成绩的平均分.
(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在分数段抽取的人数是多少?
当前题号:4 | 题型:解答题 | 难度:0.99
为了进一步推动全市学习型党组织、学习型社会建设,某市组织开展“学习强国”知识测试,每人测试文化、经济两个项目,每个项目满分均为60分.从全体测试人员中随机抽取了100人,分别统计他们文化、经济两个项目的测试成绩,得到文化项目测试成绩的频数分布表和经济项目测试成绩的频率分布直方图如下:

经济项目测试成绩频率分布直方图
分数区间
频数

2

3

5

15

40

35
 
文化项目测试成绩频数分布表
将测试人员的成绩划分为三个等级如下:分数在区间内为一般,分数在区间内为良好,分数在区间内为优秀.
(1)在抽取的100人中,经济项目等级为优秀的测试人员中女生有14人,经济项目等级为一般或良好的测试人员中女生有34人.填写下面列联表,并根据列联表判断是否有以上的把握认为“经济项目等级为优秀”与性别有关?
 
优秀
一般或良好
合计
男生数
 
 
 
女生数
 
 
 
合计
 
 
 
 
(2)用这100人的样本估计总体.
(i)求该市文化项目测试成绩中位数的估计值.
(ii)对该市文化项目、经济项目的学习成绩进行评价.
附:

0.150
0.050
0.010

2.072
3.841
6.635
 
.
当前题号:5 | 题型:解答题 | 难度:0.99
2018年4月全国青少年足球超级联赛火爆开启,这是体育与教育的强强联手,这是培养足球运动员的黄金摇篮,也是全国青少年足球的盛宴.组委会在某场联赛结束后,随机抽取了300名观众进行对足球“喜爱度”的调查评分,将得到的分数分成6段:[64,70),[70,76),[76,82),[82,88),[88,94),[94,100]后得到如图所示的频率分布直方图.
(1)求a的值并估计这300名观众评分的中位数;
(2)若评分在“88分及以上”确定为“足球迷”,现从“足球迷”中按区间[88,94)与[94,100]两部分按分层抽样抽取5人,然后再从中任意选取两人作进一步的访谈,求这两人中至少有1人的评分在区间[94,100]的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:)某频率分布直方图如下:
       
(1)设两种养殖方法的箱产量相互独立,记表示事件:“旧养殖法的箱产量低于,新养殖法的箱产量不低于”,估计的概率;
(2)填写下面列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关:
 
箱产量
箱产量
旧养殖法
 
 
新养殖法
 
 
 
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
附:

0.050
0.010
0.001

3.841
6.635
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某班进行了一次数学测试,全班学生的成绩都落在区间[50,100]内,其成绩的频率分布直方图如图所示,则该班学生这次数学测试成绩的中位数的估计值为(   )
A.81.5B.82C.81.25D.82.5
当前题号:8 | 题型:单选题 | 难度:0.99
如图所示,某鲜花店根据以往的鲜花销售记录,绘制了日销量的频率分布直方图,将日销量落入各组区间的频率视为概率,且假设每天的销售量相互独立.

(Ⅰ)求的值,并根据频率分布直方图求日销量的平均数和中位数;
(Ⅱ)“免费午餐”是一项由中国福利基金会发起的公益活动,倡议每捐款4元,为偏远山区的贫困学童提供一份免费午餐.花店老板每日将花店盈利的一部分用于“免费午餐”捐赠,具体见下表:
日销量(单位:枝)




捐赠爱心午餐(单位:份)
1
2
5
10
 
请问花店老板大概每月(按30天记)向“免费午餐”活动捐赠多少元?
当前题号:9 | 题型:解答题 | 难度:0.99
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.
    
(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?
(3)根据已知条件完成下面列联表,并回答是否有的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?
 
甲流水线
乙流水线
合计
合格品
 
 
 
不合格品
 
 
 
合计
 
 
 
 
附:,其中.
临界值表:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:10 | 题型:解答题 | 难度:0.99