- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某企业生产的某种产品中随机抽取
件,测量这些产品的一项质量指标,其频率分布表如下:
则可估计这批产品的质量指标的众数、中位数为( )

质量指标分组 | ![]() | ![]() | ![]() |
频率 | ![]() | ![]() | ![]() |
则可估计这批产品的质量指标的众数、中位数为( )
A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
分数段 | 理科人数 | 文科人数 |
![]() | | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | 正![]() | 正 |
![]() | 正![]() | ![]() |
![]() | ![]() | ![]() |
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.

(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①求该团队能进入下一关的概率;
②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.

(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①求该团队能进入下一关的概率;
②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.
某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:

(1)记
表示事件:“改造前手机产量低于5000部”,视频率为概率,求事件
的概率;
(2)填写下面
列联表,并根据列联表判断是否有
的把握认为手机产量与生产线升级改造有关:
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量
的观测值计算公式:
,其中
.
临界值表:

(1)记


(2)填写下面


| 手机产量![]() | 手机产量![]() |
改造前 | | |
改造后 | | |
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量



临界值表:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
随着人们生活水平的提高,越来越多的人愿意花更高的价格购买手机某机构为了解市民使用手机的价格情况,随机选取了100人进行调查,并将这100人使用的手机价格按照[500,1500),[1500,2500),…,[5500,6500]分成6组,制成如图所示的频率分布直方图:

(1)求图中
的值;
(2)求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样从手机价格在[1500,2500)和[500,5500)的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.

(1)求图中

(2)求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样从手机价格在[1500,2500)和[500,5500)的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.
已知某市大约有800万网络购物者,某电子商务公司对该市n名网络购物者某年度上半年的消费情况进行了统计,发现消费金额(单位:万元)都在区间[0.5,1.1]内,其频率分布直方图如图所示.

(1)求该市n名网络购物者该年度上半年的消费金额的平均数与中位数(以各区间的中点值代表该区间的均值).
(2)现从前4组中选取18人进行网络购物爱好调查.
(i)求在前4组中各组应该选取的人数;
(ii)在前2组所选取的人中,再随机选2人,求这2人都是来自第二组的概率.

(1)求该市n名网络购物者该年度上半年的消费金额的平均数与中位数(以各区间的中点值代表该区间的均值).
(2)现从前4组中选取18人进行网络购物爱好调查.
(i)求在前4组中各组应该选取的人数;
(ii)在前2组所选取的人中,再随机选2人,求这2人都是来自第二组的概率.
据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长
,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照
,
,…,
分成5组,制成如图所示的频率分布直方图.

(1)求图中
的值并估计样本数据的中位数;
(2)已知满意度评分值在
内的男女司机人数比为
,从中随机抽取2人进行座谈,求2人均为女司机的概率.





(1)求图中

(2)已知满意度评分值在


某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取
件产品作为样本称出它们的质量(单位:毫克),质量值落在
的产品为合格品,否则为不合格品。如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图。

(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);
(2)由以上统计数据完成
列联表,能否在犯错误的概率不超过
的前提下认为产品包装是否合格与两条自动包装流水线的选择有关?
下列临界值表仅供参考:
参考公式:
,其中
.


产品质量/毫克 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |

(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);
(2)由以上统计数据完成


| 甲流水线 | 乙流水线 | 总计 |
合格品 | | | |
不合格品 | | | |
总计 | | | |
下列临界值表仅供参考:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


从高三抽出
名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:

(1)这
名学生成绩的众数与中位数;
(2)这
名学生的平均成绩.


(1)这

(2)这

某工厂对一批新产品的长度(单位:
)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )



A.20,22.5 | B.22.5,25 | C.22.5,22.75 | D.22.75,22.75 |