- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的中位数
- + 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在
、
两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求两人得分之和不大于34分的概率.
每分钟跳绳个数 | ![]() | ![]() | ![]() | ![]() |
得分 | 17 | 18 | 19 | 20 |

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在


某市100000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩
(满分是184分)的频率分布直方图.

在频率分布直方图的分组中,以各组的区间中点值代表该组的各个值,测试成绩
落入该区间的频率作为测试成绩取该区间中点值的概率.已知甲、乙两名学生的测试成绩分别为168分和170分.
(1)求技能测试成绩
的中位数
,对甲、乙的成绩作出客观的评价;
(2)若市教育局把这次技能测试看作技能大比武,且作出以下奖励规定:
给测试成绩
者颁发奖金
元,
给测试成绩
者颁发奖金元
,求
;
(3)若市教育局把这次技能看作是毕业过关测试,且作出以下规定:
当测试成绩
时,统一交测试费和补测费300元;
当测试成绩
时,统一交测试费100元;
当测试成绩
时,免交测试费且颁发500元奖金.
若
,据此统计:每个测试者平均最多应该交给教育局多少元?


在频率分布直方图的分组中,以各组的区间中点值代表该组的各个值,测试成绩

(1)求技能测试成绩


(2)若市教育局把这次技能测试看作技能大比武,且作出以下奖励规定:
给测试成绩


给测试成绩



(3)若市教育局把这次技能看作是毕业过关测试,且作出以下规定:
当测试成绩

当测试成绩

当测试成绩

若

去年“十•一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
后,得到如图的频率分布直方图.

(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在
的小型汽车中任意抽取2辆,求抽出的2辆车车速都在
的概率.








(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在


某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图,并从频率分布直方图中求出中位数(中位数保留整数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | ① | 0.350 |
第3组 | [170,175) | 30 | ② |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185) | 10 | 0.100 |
合计 | 100 | 1.00 | |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图,并从频率分布直方图中求出中位数(中位数保留整数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.
某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员距篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次,并规定:成绩来自2到3米这一组时,记1分;成绩来自3到4米这一组时,记2分;成绩来4到5米的这一组记 4分,求该运动员2次总分不少于5分的概率.

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次,并规定:成绩来自2到3米这一组时,记1分;成绩来自3到4米这一组时,记2分;成绩来4到5米的这一组记 4分,求该运动员2次总分不少于5分的概率.
一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定
,
,
,
的值,并补全频率分布直方图;

(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
网购金额(单位:千元) | 频数 | 频率 | | 网购金额(单位:千元) | 频数 | 频率 |
[0,0.5) | 3 | 0.05 | | [1.5,2) | 15 | 0.25 |
[0.5,1) | ![]() | ![]() | | [2,2.5) | 18 | 0.30 |
[1,1.5) | 9 | 0.15 | | [2.5,3] | ![]() | ![]() |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定





(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.




(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两 条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面
列联表,并回答是否有85%的把握认为“该企业生产的这 种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:
(其中
为样本容量)





(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两 条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面

| 甲生产线 | 乙生产线 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某校某班在一次数学测验中,全班N名学生的数学成绩的频率分布直方图如下,已知分数在110~120的学生有14人.

(1)求总人数N和分数在120~125的人数n;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

(1)求总人数N和分数在120~125的人数n;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为
,早高峰时段
,
基本畅通;
轻度拥堵;
中度拥堵;
严重拥堵,从某市交通指挥中心随机选取了二环以内
个交通路段,依据交通指数数据绘制直方图如图所示.

(1)据此直方图估算早高峰时段交通拥堵指数的中位数和平均数;
(2)现从样本路段里的严重拥堵的路段中随机抽取两个路段进行综合整治,求选中路段中恰有一个路段的交通指数
的概率.








(1)据此直方图估算早高峰时段交通拥堵指数的中位数和平均数;
(2)现从样本路段里的严重拥堵的路段中随机抽取两个路段进行综合整治,求选中路段中恰有一个路段的交通指数

某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:
),获得的所有数据按照区间
,
,
,
进行分组,得到频率分布直方图如图。已知样本中产量在区间
上的果树株数是产量在区间
上的果树株数的
倍。

(1)求
的值;
(2)求样本的平均数和中位数。









(1)求

(2)求样本的平均数和中位数。