- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(多选题)下面是甲、乙两位同学高三上学期的5次联考的数学成绩,现只知其从第1次到第5次分数所在区间段分布的条形图(从左至右依次为第1至第5次),则从图中可以读出一定正确的信息是( )




A.甲同学的成绩的平均数大于乙同学的成绩的平均数 |
B.甲同学的成绩的中位数在115到120之间 |
C.甲同学的成绩的极差小于乙同学的成绩的极差 |
D.甲同学的成绩的中位数小于乙同学的成绩的中位数 |
树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量
,求
的分布列与数学期望.







(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量


甲、乙两个班级,一次数学考试的分数排序如下:
甲班 51 54 59 60 64 68 68 68 70 71
72 72 74 76 77 78 79 79 80 80
82 85 85 86 86 87 87 87 88 89
90 90 91 96 97 98 98 98 100 100
乙班 61 63 63 66 70 71 71 73 75 75
76 79 79 80 80 80 81 81 82 82
83 83 83 84 84 84 85 85 85 85
85 85 86 87 87 88 90 91 94 98
请你就这次考试成绩,对两个班级的数学学习情况进行评价
甲班 51 54 59 60 64 68 68 68 70 71
72 72 74 76 77 78 79 79 80 80
82 85 85 86 86 87 87 87 88 89
90 90 91 96 97 98 98 98 100 100
乙班 61 63 63 66 70 71 71 73 75 75
76 79 79 80 80 80 81 81 82 82
83 83 83 84 84 84 85 85 85 85
85 85 86 87 87 88 90 91 94 98
请你就这次考试成绩,对两个班级的数学学习情况进行评价
某校为了解全校高中学生五一假期参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示.

(1)求这100名学生中参加实践活动时间在6~10小时的人数;
(2)估计这100名学生参加实践活动时间的众数、中位数和平均数.

(1)求这100名学生中参加实践活动时间在6~10小时的人数;
(2)估计这100名学生参加实践活动时间的众数、中位数和平均数.
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:中位数为2,众数为3;
丁地:总体平均数为2,总体方差为3.
则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有哪些?
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:中位数为2,众数为3;
丁地:总体平均数为2,总体方差为3.
则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有哪些?
一家水果店的店长为了解本店苹果的日销售情况,记录了过去30天苹果的日销售量(单位:kg),结果如下:
83,96,107,91,70,75,94,80,80,100,
75,99,117,89,74,94,84,85,101,87.
93,85,107,99,55,97,86,84,85,104
(1)请计算该水果店过去30天苹果日销售量的中位数、平均数、极差和标准差
(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求,店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在100天中,大约有80天可以满足顾客的需求),请问,每天应该进多少千克苹果?
83,96,107,91,70,75,94,80,80,100,
75,99,117,89,74,94,84,85,101,87.
93,85,107,99,55,97,86,84,85,104
(1)请计算该水果店过去30天苹果日销售量的中位数、平均数、极差和标准差
(2)一次进货太多,水果会变得不新鲜;进货太少,又不能满足顾客的需求,店长希望每天的苹果尽量新鲜,又能80%地满足顾客的需求(在100天中,大约有80天可以满足顾客的需求),请问,每天应该进多少千克苹果?
已知一组数据按从小到大排列为
,0,4,x,6,15,且这组数据的中位数是5,那么数据的众数是________,平均数是________.

某校年级长为了解本校高三学生一模考试的数学成绩(单位:分),随机抽取30名学生的一模数学考试,如下所示:
估计该校高三学生一模数学成绩的25%分位数为______,50%分位数为______.
110 | 144 | 125 | 63 | 89 | 121 | 145 | 123 | 174 | 96 |
97 | 142 | 115 | 68 | 83 | 116 | 139 | 124 | 85 | 98 |
132 | 147 | 128 | 133 | 99 | 117 | 103 | 113 | 96 | 141 |
估计该校高三学生一模数学成绩的25%分位数为______,50%分位数为______.
为了解某种轮胎的性能,随机抽取了8个进行测试,其最远里程数(单位:1000 km)为:96,112,97,108,99,104,86,98,则他们的中位数是( )
A.100 km | B.99 km | C.98.5 km | D.98 km |