- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下面的茎叶图记录了甲、乙两名同学在
次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为
分,乙得分的平均数是
分,则下列结论正确的是( )





A.![]() | B.乙同学成绩较为稳定 |
C.甲数据中![]() ![]() | D.甲数据中![]() ![]() |
阅读下列材料,回答后面问题:
在2014年12月30日
播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班
被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”
对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为__________,你的理由是__________.
在2014年12月30日


对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为__________,你的理由是__________.
全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数
,数据统计如下:
(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成頻率分布直方图:

(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为
和
的监测数据中,用分层抽样的方法抽取
天,从中任意选取
天,求事件
“两天空气都为良”发生的概率.


空气质量指数![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据所给统计表和频率分布直方图中的信息求出


(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为





某篮球运动员在最近5场比赛中所得分数分别为12,
,8,15,23,其中
,若该运动员在这5场比赛中得分的中位数为12,则得分的平均数不可能为( )


A.![]() | B.![]() | C.![]() | D.14 |
某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为__________ 元.
传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是( )


A.甲的平均数大于乙的平均数 | B.甲的中位数大于乙的中位数 |
C.甲的方差大于乙的方差 | D.甲的平均数等于乙的中位数 |
某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组
,第二组
,第五组
,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.




(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.
某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取
名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试,测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需要的距离),无酒状态与酒后状态下的试验数据分别列于表
表
已知表
数据的中位数估计值为
,回答以下问题.
(Ⅰ)求
的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表
的数据计算
关于
的回归方程
;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”
大于(Ⅰ)中无酒状态下的停车距离平均数的
倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:回归方程
中,
)


停车距离![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 26 | ![]() | ![]() | 8 | 2 |
表

平均每毫升血液酒精含量![]() | 10 | 30 | 50 | 70 | 90 |
平均停车距离![]() | 30 | 50 | 60 | 70 | 90 |
已知表


(Ⅰ)求

(Ⅱ)根据最小二乘法,由表




(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”


(附:回归方程

