- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为______,______.

某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各
株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为
及以上的花苗为优质花苗.
(1)求图中
的值,并求综合评分的中位数.
(2)用样本估计总体,以频率作为概率,若在
两块试验地随机抽取
棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有
的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:
,其中
.)



(1)求图中

(2)用样本估计总体,以频率作为概率,若在


(3)填写下面的列联表,并判断是否有

| 优质花苗 | 非优质花苗 | 合计 |
甲培育法 | ![]() | | |
乙培育法 | | ![]() | |
合计 | | | |
附:下面的临界值表仅供参考.
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式:



如图茎叶图表示的是甲.乙两人在5次综合测评中的成绩,其中乙中的两个数字被污损,且已知甲,乙两人在
次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的统计表如下表所示,则有以下四种说法:
甲
乙
①甲成绩的平均数小于乙成绩的平均数; ②甲成绩的中位数等于乙成绩的中位数;
③甲成绩的方差小于乙成绩的方差; ④甲成绩的极差小于乙成绩的极差.
其中正确命题的个数是( )(注:
,其中
为数据
的平均数)
甲
环数 | 4 | 5 | 6 | 7 | 8 |
频数 | 1 | 1 | 1 | 1 | 1 |
乙
环数 | 5 | 6 | 9 |
频数 | 3 | 1 | 1 |
①甲成绩的平均数小于乙成绩的平均数; ②甲成绩的中位数等于乙成绩的中位数;
③甲成绩的方差小于乙成绩的方差; ④甲成绩的极差小于乙成绩的极差.
其中正确命题的个数是( )(注:



A.1 | B.2 | C.3 | D.4 |
将某新电动车的续航里程数统计如下图所示,则该款电动车的续航里程数的中位数约为( )


A.325 | B.312.5 | C.316.67 | D.310 |
惠州市某学校一位班主任需要更换手机语音月卡套餐,该教师统计自己1至8月的月平均通话时间,其中有6个月的月平均通话时间分别为520、530、550、610、650、660(单位:分钟),有2个月的数据未统计出来.根据以上数据,该教师这8个月的月平均通话时间的中位数大小不可能是( )
A.580 | B.600 | C.620 | D.640 |
为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,
,
,
,到如图所示的频率分布直方图.

(1)求图中
的值及样本的中位数与众数;
(2)若从竞赛成绩在
与
两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件
发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在
内的为一等奖,得分在
内的为二等奖, 得分在
内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设
为获得三等奖的人数,求
的分布列与数学期望.







(1)求图中

(2)若从竞赛成绩在





(3)为了激励同学们的学习热情,现评出一二三等奖,得分在




