- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市房管局为了了解该市市民
年
月至
年
月期间买二手房情况,首先随机抽样其中
名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图
所示的频率分布直方图,接着调查了该市
年
月至
年
月期间当月在售二手房均价
(单位:万元/平方米),制成了如图
所示的散点图(图中月份代码
分别对应
年
月至
年
月).
(1)试估计该市市民的购房面积的中位数
;
(2)从该市
年
月至
年
月期间所有购买二手房中的市民中任取
人,用频率估计概率,记这
人购房面积不低于
平方米的人数为
,求
的数学期望;
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值如下表所示:
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出
年
月份的二手房购房均价(精确到
)
(参考数据)
,
,
,
,
,
,
.
(参考公式)
.




















(1)试估计该市市民的购房面积的中位数

(2)从该市









(3)根据散点图选择




| ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() |
请利用相关指数




(参考数据)







(参考公式)

一个样本数据从小到大的顺序排列为12,15,20,x,23,28,30,50,其中,中位数为22,则
( )

A.21 | B.15 | C.22 | D.35 |
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为
,众数为
,平均值为
,则()





A.![]() ![]() ![]() | B.![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() |
某公司为了解共享单车的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率分布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)估计样本的平均数.

(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)估计样本的平均数.
某中学高二年级的甲、乙两个班各选出5名学生参加数学竞赛,在竞赛中他们取得成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83分,乙班5名学生成绩的中位数是86.若从成绩在85分及以上的学生中随机抽2名,则至少有1名学生来自甲班的概率为__________ .

某企业为了解某产品的销售情况,选择某个电商平台对该产品销售情况作调查.统计了一年内的月销售数量(单位:万件),得到该电商平台月销售数量的茎叶图.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;当月低于40万件没有奖励,用该样本估计总体,从电商平台一个年度内高于该年月销售平均数的月份中任取两个月,求这两个月企业发给电商平台的奖金为20万元的概率.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;当月低于40万件没有奖励,用该样本估计总体,从电商平台一个年度内高于该年月销售平均数的月份中任取两个月,求这两个月企业发给电商平台的奖金为20万元的概率.
某赛季,甲、乙两名篮球运动员都参加了
场比赛,他们所有比赛得分的情况如下:
甲:
;
乙:
.
(1)求甲、乙两名运动员得分的中位数.
(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?

甲:

乙:

(1)求甲、乙两名运动员得分的中位数.
(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?
某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在
内的人数为
,求
的分布列及数学期望.

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在



某校随机抽取100名同学进行“垃圾分类"的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,则这100名同学的得分的中位数为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( )


A.89 54.5 | B.89 53.5 |
C.87 53.5 | D.89 54 |