- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- + 中位数
- 计算几个数的中位数
- 由频率分布直方图估计中位数
- 由茎叶图计算中位数
- 用中位数的代表意义解决实际问题
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班进行了一次数学测试,全班学生的成绩都落在区间[50,100]内,其成绩的频率分布直方图如图所示,则该班学生这次数学测试成绩的中位数的估计值为( )


A.81.5 | B.82 | C.81.25 | D.82.5 |
2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩
服从正态分布
,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:

(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为
,求
的数学期望.
附:若随机变量
服从正态分布
,则
,
,
.
参考公式与临界值表:
,其中
.



(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有

(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为


附:若随机变量






参考公式与临界值表:


![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
某数学兴趣小组有男女生各5名.以下茎叶图记录了该小组同学在一次数学测试中的成绩(单位:分).已知男生数据的中位数为125,女生数据的平均数为126.8.

(1)求
的值;
(2)现从成绩高于125分的同学中随机抽取两名同学,求抽取的两名同学恰好为一男一女的概率.

(1)求

(2)现从成绩高于125分的同学中随机抽取两名同学,求抽取的两名同学恰好为一男一女的概率.
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.

(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?
(3)根据已知条件完成下面
列联表,并回答是否有
的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?
附:
,其中
.
临界值表:



(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?
(3)根据已知条件完成下面


| 甲流水线 | 乙流水线 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附:


临界值表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则
的值为_______.



A.中位数、极差 | B.平均数、方差 |
C.方差、极差 | D.极差、平均数 |
随着人们生活水平的提高,越来越多的人愿意花更高的价格购买手机某机构为了解市民使用手机的价格情况,随机选取了100人进行调查,并将这100人使用的手机价格按照[500,1500),[1500,2500),…,[5500,6500]分成6组,制成如图所示的频率分布直方图:

(1)求图中
的值;
(2)求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样从手机价格在[1500,2500)和[500,5500)的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.

(1)求图中

(2)求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样从手机价格在[1500,2500)和[500,5500)的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.
某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则
的值为( )



A.4 | B.5 | C.6 | D.7 |
2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.

(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;
(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.

(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;
(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.