- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列四种说法中正确的有______.(填序号)①数据2,2,3,3,4,6,7,3的众数与中位数相等;②数据1,3,5,7,9的方差是数据2,6,10,14,18的方差的一半;③一组数据的方差大小反映该组数据的波动性,若方差越大,则波动性越大,方差越小,则波动性越小.④频率分布直方图中各小长方形的面积等于相应各组的频数.
环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,下表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.
(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;
(2)用分层抽样的方法从行车里程在区间
与
的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在
内的概率.
分组 | 频数 |
![]() | 6 |
![]() | 10 |
![]() | 20 |
![]() | 30 |
![]() | 18 |
![]() | 12 |
![]() | 4 |
(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;
(2)用分层抽样的方法从行车里程在区间



为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时)如下:
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
248 256 232 243 188 268 278 266 289 312
274 296 288 302 295 228 287 217 329 283
分组 | 频数 | 频率 | 频率/组距 |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
总计 | | | 0.05 |

(1)完成频率分布表,并作出频率分布直方图;
(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;
(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.
某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表:

求出频率分布表中
处应填写的数据,并完成如图所示的频率分布直方图;
根据直方图估计这次自主招生考试笔试成绩的平均数和中位数
结果都保留两位小数
.
组号 | 分组 | 频率 |
第1组 | ![]() | ![]() |
第2组 | ![]() | ![]() |
第3组 | ![]() | ![]() |
第4组 | ![]() | ![]() |
第5组 | ![]() | ![]() |






某校从高一新生开学摸底测试成绩中随机抽取
人的成绩,按成绩分组并得各组频数如下(单位:分):
,
;
,
;
,
;
,
;
,
;
,
.

(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计本次考试成绩的中位数(精确到
).













成绩分组 | 频数 | 频率 | 频率/组距 |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
![]() | | | |
合计 | | | |

(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计本次考试成绩的中位数(精确到

某公司为了解用户对其产品的满意度,从
两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到
地区用户满意度评分的频率分布直方图和
地区用户满意度评分的频数分布表.
地区用户满意度评分的频率分布直方图如下:

地区用户满意度评分的频数分布表如下:

(1)在图中作出
地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).
地区用户满意度评分的频率分布直方图

(2)根据用户满意度评分,将用户的满意度分为三个等级:

公司负责人为了解用户满意度情况,从B地区调查8户,其中有两户满意度等级是不满意.求从这8户中随机抽取2户检查,抽到不满意用户的概率.







(1)在图中作出



(2)根据用户满意度评分,将用户的满意度分为三个等级:

公司负责人为了解用户满意度情况,从B地区调查8户,其中有两户满意度等级是不满意.求从这8户中随机抽取2户检查,抽到不满意用户的概率.
行了一次水平测试。用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究。经统计成绩的分组及各组的频数如下:
,2;
,3;
,10;
,15;
,12;
,8.
(Ⅰ)频率分布表
频率分布直方图为

(Ⅰ)完成样本的频率分布表;画出频率分直方图;
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)






(Ⅰ)频率分布表
分组 | 频数 | 频率 |
![]() | 2 | |
![]() | 3 | |
![]() | 10 | |
![]() | 15 | |
![]() | 12 | |
![]() | 8 | |
合计 | 50 | |
频率分布直方图为

(Ⅰ)完成样本的频率分布表;画出频率分直方图;
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:

请根据频率分布表中所提供的数据,解得下列问题:
(1)求
的值,并完成频率分布直方图;
(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;
(3)若将水果作分级销售,预计销售的价格
元/个与每个水果的大小
克关系是:
,则预计10000个水果可收入多少元?
级别 | 大小(克) | 频数 | 频率 |
一级果 | ![]() | 5 | 0.05 |
二级果 | ![]() | ![]() | |
三级果 | ![]() | 35 | ![]() |
四级果 | ![]() | 30 | |
五级果 | ![]() | 20 | |
合计 | | 100 | |

请根据频率分布表中所提供的数据,解得下列问题:
(1)求

(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;
(3)若将水果作分级销售,预计销售的价格



从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?