- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校在2012年的自主招生考试成绩中随机抽取
名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

(1)请先求出频率分布表中
位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第
组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在
名学生中随机抽取
名学生接受
考官进行面试,求:第
组至少有一名学生被考官
面试的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | 5 | ![]() |
第2组 | ![]() | ① | ![]() |
第3组 | ![]() | 30 | ② |
第4组 | ![]() | 20 | ![]() |
第5组 | ![]() | 10 | ![]() |

(1)请先求出频率分布表中

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第

(3)在(2)的前提下,学校决定在





私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了
人,将调查情况进行整理后制成下表:
(
)完成被调查人员的频率分布直方图.
(
)若从年龄在
,
的被调查者中各随机选取
人进行追踪调查,求恰有
人不赞成的概率.
(
)在
在条件下,再记选中的
人中不赞成“车辆限行”的人数为
,求随机变量
的分布列和数学期望.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(

(





(





某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为
,求
的分布列及数学期望.

(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为






组号 | 分组 | 频数 | 频率 |
1 | [0,5) | 5 | 0.05 |
2 | [5,10) | a | 0.35 |
3 | [10,15) | 30 | b |
4 | [15,20) | 20 | 0.20 |
5 | [20,25] | 10 | 0.10 |
合计 | 100 | 1 |
(1)求


(2)作出这些数据的频率分布直方图

(3)假设每组数据组间是平均分布的,试估计该组数据的平均数和中位数.(同一组中的数据用该组区间的中点值作代表)
为了比较注射
,
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物
和药物
后的实验结果.(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物
后皮肤疱疹面积的频数分布表
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面
列联表,并回答能否有99.9%的把握认为“注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异”.

附:







表1:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() |
频数 | 30 | 40 | 20 | 10 |
表2:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面




| 疱疹面积小于![]() | 疱疹面积不小于![]() | 合计 |
注射药物![]() | | | |
注射药物![]() | | | |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.025 | 0.01 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |




组别 | 分组 | 频数 | 频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
合计 | | ![]() | ![]() |
(1)写出


(2)画出频率分布直方图,估算中位数;
(3)在选取的样本中,从满意观众中随机抽取




某家庭记录了未使用节水龙头
天的日用水量数据(单位:
)和使用了节水龙头
天的日用水量数据,得到频数分布表如下:
未使用节水龙头
天的日用水量频数分布表
使用了节水龙头
天的日用水量频数分布表
(Ⅰ)作出使用了节水龙头
天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按
天计算,同一组中的数据以这组数据所在区间中点的值作代表)



未使用节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
使用了节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)作出使用了节水龙头

(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按

从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:

在图中作出这些数据的频率分布直方图;
估计这种产品质量指标值的平均数、中位数
保留2位小数
;
根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的
”的规定?
质量指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 26 | 38 | 22 | 8 |







共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100名同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如下表:

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生的人数;
(2)作出这些数据的频率分布直方图;

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生的人数;
(2)作出这些数据的频率分布直方图;
