- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- + 根据频率分布表解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将容量为100的样本数据,按由小到大排列分成8个小组,如表所示,第3组的频率和累计频率为 ( )


A.0.14和0.37 | B.![]() ![]() | C.0.03和0.06 | D.![]() ![]() |
某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表所示,则估计该住宅区已安装数字电视的户数是( )


A.5 500 | B.5 000 |
C.8 000 | D.9 500 |
唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位;kg)数据,将数据分组如下表:

(1)在答题卡上完成频率分布表;
(2)重量落在
中的频率及重量小于2.45的频率是多少?
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是
作为代表.据此,估计这100个数据的平均值.

(1)在答题卡上完成频率分布表;
(2)重量落在

(3)统计方法中,同一组数据常用该组区间的中点值(例如区间


2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.

图1
(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)

图1
选手乙的接发球技术统计表
技术 | 反手拧球 | 反手搓球 | 反手拉球 | 反手拨球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次数 | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)
从2017年1月18日开始,支付宝用户可以通过“
扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜
,每一位提前集齐五福的用户都将获得一份现金红包.某髙校一个社团在年后开学后随机调査了80位该校在读大学生,就除夕夜
之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

(1)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(2)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.




(1)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(2)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.
某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表所示,则估计该住宅区已安装数字电视的户数是( )
数字电视 | 老住户 | 新住户 |
已安装 | 30 | 50 |
未安装 | 65 | 55 |
A.5 500 | B.5 000 |
C.8 000 | D.9 500 |
为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数(
)(
指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数
数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个
数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;
(2)从(1)中抽出的6个样本数据中随机抽取2个,求这2个
数据之差的绝对值小于30的概率;
(3)根据《环境空气质量指数(
)技术规定(试行)》规定:当空气质量指数为
(含50)时,空气质量级别为一级,求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?



(1)将2017年11月的空气质量指数


(2)从(1)中抽出的6个样本数据中随机抽取2个,求这2个

(3)根据《环境空气质量指数(


电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取
部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取
部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加
,哪类电影的好评率减少
,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
好评率 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取

(Ⅱ)随机选取

(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加


随着移动互联网的快速发展,基于互联网的共享单车应运而生.某共享单车运营公司
为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为
元/辆和
元/辆的
、
两款车型可供选择,按规定每辆单车最多使用
年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各
辆进行科学模拟测试,得到两款单车使用寿命频数表见下表.

经测算,平均每辆单车每年可以带来收入
元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年.
(1)分别估计
、
两款车型使用寿命不低于
年的概率;
(2)如果你是
公司的负责人,以参加科学模拟测试的两款车型各
辆单车产生利润的平均数为决策依据,你会选择采购哪款车型?








经测算,平均每辆单车每年可以带来收入

(1)分别估计



(2)如果你是


对一个样本容量为100的数据分组,各组的频数如表:
估计小于29的数据大约占总体的( )
区间 | [17,19) | [19,21) | [21,23) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33] |
频数 | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估计小于29的数据大约占总体的( )
A.16% | B.40% | C.42% | D.58% |