- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了增强消防意识,某部门从男,女职工中各随机抽取了20人参加消防知识测试(满分为100分),这40名职工测试成绩的茎叶图如下图所示

(1)根据茎叶图判断男职工和女职工中,哪类职工的测试成绩更好?并说明理由;
(2)(ⅰ)求这40名职工成绩的中位数
,并填写下面列联表:
(ⅱ)如果规定职工成绩不少于m定为优秀,根据(ⅰ)中的列联表,能否有99%的把握认为消防知识是否优秀与性别有关?
附:
.

(1)根据茎叶图判断男职工和女职工中,哪类职工的测试成绩更好?并说明理由;
(2)(ⅰ)求这40名职工成绩的中位数

| 超过![]() | 不超过![]() |
男职工 | | |
女职工 | | |
(ⅱ)如果规定职工成绩不少于m定为优秀,根据(ⅰ)中的列联表,能否有99%的把握认为消防知识是否优秀与性别有关?
附:

P(![]() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
一个容量为9的样本,它的平均数为
,方差为
,把这个样本中一个为4的数据去掉,变成一个容量为8的新样本,则新样本的平均数为________,方差为________.


我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照
,
,
,
,
分成5组,制成了如图所示的频率分布直方图.

(1)记事件A:“全市家庭月均用水量不低于6t”,求
的估计值;
(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);
(3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).






(1)记事件A:“全市家庭月均用水量不低于6t”,求

(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);
(3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).
某家庭2019年一月份收入的总开支分布饼形图如图1所示,这个月的食品开支柱状图如图2所示:
图1
图2
那么这个月的肉食类开支占这个家庭收入总开支的( )
图1


那么这个月的肉食类开支占这个家庭收入总开支的( )
A.10% | B.15% | C.20% | D.30% |
2019年12月,全国各中小学全体学生都参与了《禁毒知识》的答题竞赛,现从某校高一年级参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…
).

(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试成绩的中位数的估计值;
(3)若从抽出的成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.




(1)求成绩在

(2)求这次考试成绩的中位数的估计值;
(3)若从抽出的成绩在


水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.
随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.

为缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的原则是:①“盲拍”,即所有参与竞拍的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞价人的出价从高到低分配名额.某人拟参加2018年10月份的车牌竞价,他为了预测最低成交价,根据竞拍网站的公告,统计了最近5个月参与竞拍的人数(见表):
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为
,请求出表中的m的值并预测2018年9月参与竞拍的人数;
(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
(i)求这200位竞拍人员报价的平均值
(同一区间的报价可用该价格区间的中点值代替);
(ii)假设所有参与竞拍人员的报价X服从正态分布
,且
为(i)中所求的样本平均数
的估值,
.若2018年9月实际发放车牌数量为3174,请你合理预测(需说明理由)竞拍的最低成交价.参考公式及数据:若随机变量Z服从正态分布
,则:
,
,
.
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
竞拍人数y(万人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可以线性回归模拟竞拍人数y(万人)与月份编号t之间的相关关系.现用最小二乘法求得y关于t的回归方程为

(2)某市场调研机构对200位拟参加2018年9月车牌竞拍人员的报价价格进行了一个抽样调查,得到如下一个频数表:
报价区间(万元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞拍人员报价的平均值

(ii)假设所有参与竞拍人员的报价X服从正态分布







