- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )


A.3,5 | B.5,5 | C.3,7 | D.5,7 |
气象意义上从春季进入夏季的标志为:“连续5天每天日平均温度不低于22℃”,现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位℃)
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,平均数为24;
③丙地:5个数据中有一个数据是32,平均数为26.
方差为
,则肯定进入夏季的地区有( )
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,平均数为24;
③丙地:5个数据中有一个数据是32,平均数为26.
方差为

A.0个 | B.1个 | C.2个 | D.3个 |
某班有50名学生,该班某次数学测验的平均分为70分,标准差为s,后来发现成绩记录有误:甲生得了80分,却误记为50分;乙生得了70分,却误记为100分.更正后得标准差为s1,则s与s1之间的大小关系为()
A.s<s1 | B.s>s1 |
C.s=s1 | D.无法确定 |
右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为
,
,
,
,
,
.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.







右图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数
的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )

的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )

A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的
城市和交通拥堵严重的
城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此
列联表,并据此样本分析是否有
的把握认为城市拥堵与认可共享单车有关:
附:参考数据:(参考公式:
)



若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此


| ![]() | ![]() | 合计 |
认可 | | | |
不认可 | | | |
合计 | | | |
附:参考数据:(参考公式:

![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某中学举行英语演讲比赛,右图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和方差分别为( )


A.84,4.84 | B.84,1.6 | C.85,4 | D.86,1.6 |
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是( )

根据该折线图,下列结论错误的是( )
A.月接待游客量逐月增加 |
B.年接待游客量逐年增加 |
C.各年的月接待游客量高峰期大致在7,8月 |
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 |
如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则下列说法正确的是( )


A.平均数为62.5 | B.中位数为62.5 | C.众数为60和70 | D.以上都不对 |
某赛季甲、乙两位运动员每场比赛得分的茎叶图如图所示.

(1)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;
(2)试用统计学中的平均数、方差知识对甲、乙两位运动员的测试成绩进行分析.

(1)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;
(2)试用统计学中的平均数、方差知识对甲、乙两位运动员的测试成绩进行分析.