- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“五·一”放假期间,某旅行社共组织
名游客,分三批到北京、香港两地旅游,为了做好游客的行程安排,旅行社对参加两地旅游的游客人数进行了统计,列表如下:
已知在参加北京、香港两地旅游的
名游客中,第二批参加北京游的频率是
.
(1)现用分层抽样的方法在所有游客中抽取
名游客,协助旅途后勤工作,问应在第三批参加旅游的游客中抽取多少名游客?
(2)已知
,
,求第三批游客中到北京旅游人数比到香港旅游人数多的概率.

| 第一批 | 第二批 | 第三批 |
北京 | 200 | x | y |
香港 | 150 | 160 | z |
已知在参加北京、香港两地旅游的


(1)现用分层抽样的方法在所有游客中抽取

(2)已知


为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班.
(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;
(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;
(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
随机抽取某中学甲、乙两班各10名同学测量,他们身高(单位:cm)获得身高数据如下:
甲:158、162、163、168、168、170、171、179、179、182
乙:159、162、165、168、170、173、176、178、179、181
(1)判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取2名身高不低于173cm的同学,求身高为176cm同学被抽中的概率.
甲:158、162、163、168、168、170、171、179、179、182
乙:159、162、165、168、170、173、176、178、179、181
(1)判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取2名身高不低于173cm的同学,求身高为176cm同学被抽中的概率.
已知某校高一学生的学号后三位数字从001编至818,教育部门抽查了该校高一学生学号后两位数字是16的同学的体育达标情况.这里所用的抽样方法是 ( )
A.抽签法 | B.分层抽样 | C.系统抽样 | D.随机数表法 |
一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).
(1)直方图中a的值为多少?
(2)要再用分层抽样方法抽出80人作进一步调查,则在


某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如下表所示:
电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为( )
最喜爱 | 喜爱 | 一般 | 不喜欢 |
4800 | 7200 | 6400 | 1600 |
电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为( )
A.25,25,25,25 | B.48,72,64,16 | C.20,40,30,10 | D.24,36,32,8 |
某校高中生共有2000人,其中高一年级560人,高二年级640人,高三年级800
人,现采取分层抽样抽取容量为100的样本,那么高二年级应抽取的人数为 人.
人,现采取分层抽样抽取容量为100的样本,那么高二年级应抽取的人数为 人.
在“世界读书日”前夕,为了了解某大学5000名学生某天的阅读时间,从中抽取了200名学生的阅读时间进行统计分析.在这个问题中,5000名学生的阅读时间的全体是
A.个体 |
B.总体 |
C.样本的容量 |
D.从总体中抽取的一个样本 |
为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为
)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
(Ⅰ)求样本容量
和频率分布直方图中的
、
的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3
名学生参加“中国谜语大会”,设随机变量
表示所抽取的3名学生中得分在
内的学生人数,求随机变量
的分布列及数学期望.









(Ⅰ)求样本容量



(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3
名学生参加“中国谜语大会”,设随机变量





某高级中学共有学生3000名,各年段男、女学生人数如下表
已知在全校学生中随机抽取1名,抽到高二女生的概率为0.17,
(1)问高二年段女生有多少名?
(2)现对各年段采用分层抽样的方法,在全校抽取300名学生,问应在高三年段抽取多少名学生
| 高一年 | 高二年 | 高三年 |
女生 | 523 | x | Y |
男生 | 487 | 490 | z |
已知在全校学生中随机抽取1名,抽到高二女生的概率为0.17,
(1)问高二年段女生有多少名?
(2)现对各年段采用分层抽样的方法,在全校抽取300名学生,问应在高三年段抽取多少名学生