- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取
名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中的
的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在
的选取2名担任主要发言人.记这2名主要发言人年龄在
的人数为
,求
的分布列及数学期望.



(1)求出表中的

(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在




某学校高一 、高二 、高三三个年级共有
名教师,为调查他们的备课时间情况,通过分层
抽样获得了
名教师一周的备课时间 ,数据如下表(单位 :小时):
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是
(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为
,表格中的数据平均数记为
,试判断
与
的大小. (结论不要求证明)

抽样获得了

高一年级 | ![]() | ![]() | ![]() | ![]() | ![]() | | | |
高二年级 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
高三年级 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)试估计该校高三年级的教师人数 ;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是





山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的调查,其结果(人数分布)如表:
(Ⅰ)用分层抽样的方法在
岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;
(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取
个人,其中35岁以下48人,50岁以上10人,再从这
个人中随机抽取出1人,此人的年龄为50岁以上的概率为
,求
、
的值.
学历 | 35岁以下 | 35![]() | 50岁以上 |
本科 | 80 | 30 | 20 |
研究生 | ![]() | 20 | ![]() |
(Ⅰ)用分层抽样的方法在

(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取





某家电公司销售部门共有
名销售员,每年部门对每名销售员都有
万元的年度销售任务.已知这
名销售员去年完成的销售额都在区间
(单位:百万元)内,现将其分成
组,第
组、第
组、第
组、第
组、第
组对应的区间分别为
,
,
,
,
,并绘制出如下的频率分布直方图.

(1)求
的值,并计算完成年度任务的人数;
(2)用分层抽样的方法从这
名销售员中抽取容量为
的样本,求这
组分别应抽取的人数;
(3)现从(2)中完成年度任务的销售员中随机选取
名,奖励海南三亚三日游,求获得此奖励的
名销售员在同一组的概率.
















(1)求

(2)用分层抽样的方法从这



(3)现从(2)中完成年度任务的销售员中随机选取


某校高三文科500名学生参加了5月份的模拟考试,学校为了了解高三文科学生的数学、语文情况,利用随机数表法从中抽取100名学生的成绩进行统计分析,抽出的100名学生的数学、语文成绩如下表:

(1)将学生编号为:001,002,003,……,499,500.若从第5行第5列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4行至第7行)

(2)若数学的优秀率为
,求
的值;
(3)在语文成绩为良好的学生中,已知
,求数学成绩“优”比“良”的人数少的概率.

(1)将学生编号为:001,002,003,……,499,500.若从第5行第5列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4行至第7行)

(2)若数学的优秀率为


(3)在语文成绩为良好的学生中,已知

为了检查某超市货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )
A.5,10,15,20,25 | B.2,4,8,16,32 | C.1,2,3,4,5 | D.7,17,27,37,47 |
已知某高中共有2400人,其中高一年级600人,现对该高中全体学生利用分层抽样的方法进行一项调查,需要从高一年级抽取30人,则全校应一共抽取___人。
长郡中学将参加摸底测试的1200名学生编号为1,2,3,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为
A.68 | B.92 | C.82 | D.170 |
为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院
的50人进行了问卷调查,得到了如下的
列联表:
(1)用分层抽样的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量
,判断是否有
的把握认为
患心肺疾病与性别有关?
右面的临界值表供参考:
(参考公式:
)
的50人进行了问卷调查,得到了如下的

| 患心肺疾病 | 不患心肺疾病 | 合计 |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)用分层抽样的方法在患心肺疾病的人群中抽取6人,其中男性抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量


患心肺疾病与性别有关?
右面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:

某校从高三年级中随机选取200名学生,将他们的一模数学成绩绘制成频率分布直方图(如图). 由图中数据可知
__________ .若要从成绩在
三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从成绩在
内的学生中选取的人数应为__________ .



