- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校为了解学生学习的情况,采用分层抽样的方法从高一240人、高二 200人、高三160人中,抽取60人进行问卷调查,则高一年级被抽取的人数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某方便面生产线上每隔15分钟抽取一包进行检验,该抽样方法为①,从某中学的40名数学爱好者中抽取5人了解学习负担情况,该抽样方法为②,那么①和②分别为
A.①系统抽样,②简单随机抽样 | B.①分层抽样,②系统抽样 |
C.①系统抽样, ②分层抽样 | D.①分层抽样,②简单随机抽样 |
某高中有高一新生500名,分成水平相同的A,B两类教学实验,为对比教学效果,现用分层抽样的方法从A,B两类学生中分别抽取了40人,60人进行测试.
(1)求该学校高一新生A,B两类学生各多少人?
(2)经过测试,得到以下三个数据图表:

图1:75分以上A,B两类参加测试学生成绩的茎叶图

图2:100名测试学生成绩的频率分布直方图
下图表格:100名学生成绩分布表:

①先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;
②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.
(1)求该学校高一新生A,B两类学生各多少人?
(2)经过测试,得到以下三个数据图表:

图1:75分以上A,B两类参加测试学生成绩的茎叶图

图2:100名测试学生成绩的频率分布直方图
下图表格:100名学生成绩分布表:

①先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;
②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.
某方便面生产线上每隔15分钟抽取一包进行检验,该抽样方法为①,从某中学的40名数学爱好者中抽取5人了解学习负担情况,该抽样方法为②,那么①和②分别为
A.①系统抽样,②分层抽样 | B.①系统抽样, ②简单随机抽样 |
C.①分层抽样,②系统抽样 | D.①分层抽样,②简单随机抽样 |
“微信运动”是手机
推出的多款健康运动软件中的一款,大学生
的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:
、0~2000步,(说明:“0~2000”表示“大于或等于0,小于2000”,以下同理),
、2000~5000步,
、5000~8000步,
、8000~10000步,
、10000~12000步,且
三种类别的人数比例为
,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.

若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”.
(Ⅰ)若以大学生
抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生
的参与“微信运动”的400位微信好友中,每天走路步数在2000~8000的人数;
(Ⅱ)若在大学生
该天抽取的步数在8000~12000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;
(Ⅲ)请根据抽取的样本数据完成下面的
列联表,并据此判断能否有
的把握认为“认定类别”与“性别”有关?










| 参与者 | 超越者 | 合计 |
男 | | | 20 |
女 | | | 20 |
合计 | | | 40 |
若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”.
(Ⅰ)若以大学生


(Ⅱ)若在大学生

(Ⅲ)请根据抽取的样本数据完成下面的


某校高一年级有400名学生,高二年级有360名学生,现用分层抽样的方法在这760名学生中抽取一个样本.已知在高一年级中抽取了60名学生,则在高二年级中应抽取的学生人数为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级为标准,用分层抽样的方法从这三个年级学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取学生( )
A.200人 | B.300人 |
C.320人 | D.350人 |
某名校从
年到
年考入清华,北大的人数可以通过以下表格反映出来.(为了方便计算,将
年编号为
,
年编为
,以此类推……)
(1)将这
年的数据分为人数不少于
人和少于
人两组,按分层抽样抽取
年,问考入清华、北大的人数不少于20的应抽多少年?在抽取的这
年里,若随机的抽取两年恰有一年考入清华、北大的人数不少于
的概率是多少?;
(2)根据最近
年的数据,利用最小二乘法求出与之间的线性回归方程,并用以预测
年该校考入清华、北大的人数.(结果要求四舍五入至个位)
参考公式:






年份![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)将这






(2)根据最近


参考公式:

为有效促进我市体育产业和旅游产业有机融合,提高我市的知名度,更好地宣传萍乡武功山,并通过赛事向社会各界传播健康、低碳、绿色、环保的运动理念。在今年9月21日第九届环鄱阳湖国际自行车大赛第九站比赛在我市武功山举行。在这次89.5公里的自行车个人赛中,其中25名参赛选手的成绩(单位:分钟)的茎叶图如图所示:
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
14 | 0 | 1 | 2 | 3 | 5 | 6 | 6 | 6 | 6 | 8 | 9 |
15 | 0 | 2 | 3 | 4 | 5 | 5 | 5 | 7 | 9 | | |
16 | 0 | 0 | 5 | 6 | 7 | | | | | | |
(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人,已知选手甲的成绩为145分钟,若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性,试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
古代科举制度始于隋而成于唐,完备于宋、元.明代则处于其发展的鼎盛阶段.其中表现之一为会试分南卷、北卷、中卷按比例录取,其录取比例为11:7:2.若明宣德五年会试录取人数为100.则中卷录取人数为______.