- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午
这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段
记作区间
,
记作
,
记作
,
记作
,例如:10点04分,记作时刻64.

(1)估计这600辆车在
时间段内通过该收费点的时刻的平均值
同一组中的数据用该组区间的中点值代表
;
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在
之间通过的车辆数为
,求
的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布
,其中
可用这600辆车在
之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替
同一组中的数据用该组区间的中点值代表
,已知大年初五全天共有1000辆车通过该收费点,估计在
之间通过的车辆数
结果保留到整数
.
参考数据:若
,则
;
;
.










(1)估计这600辆车在



(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在



(3)由大数据分析可知,车辆在每天通过该收费点的时刻服从正态分布









参考数据:若




在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在
内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.

(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为
,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.


(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为

从某高中学生的体能测试结果中,随机抽取100名学生的测试结果,按体重分组得到如图所示的频率分布直方图.

(1)若该校约有
的学生体重不超过“标准体重
”,试估计
的值,并说明理由;
(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数
的分布列及期望.

(1)若该校约有



(2)从第3、4、5组中用分层抽样的方法抽取6名学生进行了第二次测试,现从这6人中随机抽取2人进行日常运动习惯的问卷调查,求抽到4组的人数

由郭帆执导吴京主演的电影《流浪地球》于2019年2月5日起在中国内地上映,影片引发了观影热潮,预计《流浪地球》票房收入47亿人民币,超过《红海行动》成为中国影史票房亚军,仅次于《战狼2》.某电影院为了解该影院观看《流浪地球》的观众的年龄构成情况,随机抽取了40名观众,将他们的年龄分成7段:
,
,
,
,
,
,
,得到如图所示的频率分布直方图.

(1)试求这40名观众年龄的平均数、中位数、众数;
(2)(i)若从样本中年龄在50岁以上的观众中任取3名赠送VIP贵宾观影卡,求这3名观众至少有1人年龄不低于70岁的概率;
(ii)该电影院决定采用抽奖方式来提升观影人数,将《流浪地球》电影票票价提高20元,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金
元、
元,
元.设观众每次中奖的概率均为
,若要使抽奖方案对电影院有利,则
最高可定为多少元?(结果精确到个位)








(1)试求这40名观众年龄的平均数、中位数、众数;
(2)(i)若从样本中年龄在50岁以上的观众中任取3名赠送VIP贵宾观影卡,求这3名观众至少有1人年龄不低于70岁的概率;
(ii)该电影院决定采用抽奖方式来提升观影人数,将《流浪地球》电影票票价提高20元,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金





为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了100户家庭进行问卷调查.经调查发现,这些家庭的月收入在3000元到10000元之间,根据统计数据作出如图所示的频率分布直方图:

(1)经统计发现,该社区居民的家庭月收入
(单位:百元)近似地服从正态分布
,其中
近似为样本平均数.若
落在区间
的左侧,则可认为该家庭属“收入较低家庭”,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区
家庭月收入为4100元,试判断
家庭是否属于“收入较低家庭”,并说明原因;
(2)将样本的频率视为总体的概率.
①从该社区所有家庭中随机抽取
户家庭,若这
户家庭月收入均低于8000元的概率不小于50%,求
的最大值;
②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于
的获赠两次随机购物卡,家庭月收入不低于
的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:
则
家庭预期获得的购物卡金额为多少元?(结果保留整数)

(1)经统计发现,该社区居民的家庭月收入







(2)将样本的频率视为总体的概率.
①从该社区所有家庭中随机抽取



②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调查的家庭制定了赠送购物卡的活动,赠送方式为:家庭月收入低于


赠送购物卡金额(单位:元) | 100 | 200 | 300 |
概率 | ![]() | ![]() | ![]() |
则

某学校为了解该校高三年级学生数学科学习情况,对一模考试数学成绩进行分析,从中抽取了
名学生的成绩作为样本进行统计,该校全体学生的成绩均在
,按照
,
,
,
,
,
,
,
的分组作出频率分布直方图如图(1)所示,样本中分数在
内的所有数据的茎叶图如图(2)所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(3).

和频率分布直方图中的
,
的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量
的分布列和数学期望.












分数 | ![]() | ![]() ![]() | ![]() |
可能被录取院校层次 | 专科 | 本科 | 重本 |
图(3)
(1)求


(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量

某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.
(1)求余下的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是第2、3、4天的数据,求
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?
(参考公式;线性回归方程
中系数计算公式:
,
,其中
、
表示样本的平均值)
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
温度![]() | 10 | 11 | 13 | 12 | 8 |
发芽数![]() | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是第2、3、4天的数据,求



(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?
(参考公式;线性回归方程






某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在
的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
随着互联网的不断发展,手机打车软件APP也不断推出.在某地有A、B两款打车APP,为了调查这两款软件叫车后等候的时间,用这两款APP分别随机叫了50辆车,记录了候车时间如下表:
A款软件:
B款软件:
(1)试画出A款软件候车时间的频率分布直方图,并估计它的众数及中位数;
(2)根据题中所给的数据,将频率视为概率
(i)能否认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上?
(ii)仅从两款软件的平均候车时间来看,你会选择哪款打车软件?
A款软件:
候车时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
车辆数 | 2 | 12 | 8 | 12 | 14 | 2 |
B款软件:
候车时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
车辆数 | 2 | 10 | 28 | 7 | 2 | 1 |
(1)试画出A款软件候车时间的频率分布直方图,并估计它的众数及中位数;
(2)根据题中所给的数据,将频率视为概率
(i)能否认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上?
(ii)仅从两款软件的平均候车时间来看,你会选择哪款打车软件?

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶7元,未售出的酸奶降价处理,以每瓶1.5元的价格当天全部处理完.据往年销售经验,每天需求量与当天最高气温(单位:
)有关,如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),若该超市在六月份每天的进货量均为450瓶,写出
的所有可能值,并估计
大于零的概率.


最高气温 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 2 | 14 | 34 | 27 | 9 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为


