- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高一200名学生的期中考试语文成绩服从正态分布
,数学成绩的频数分布直方图如下:

(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有
人,求
的分布列和数学期望.
(附参考公式)若
,则
,


(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有


(附参考公式)若



在2018年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前
名学生,并对这
名学生按成绩分组,第一组
,第二组
,第三组
,第四组
,第五组
.如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.

(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若
大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若
大学本次面试中有
,
,
三位考官,规定获得至少两位考官的认可即为面试成功,且各考官面试结果相互独立.已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
,
,
,求甲同学面试成功的概率;
②若
大学决定在这6名学生中随机抽取3名学生接受考官
的面试,第3组有
名学生被考官
面试,求
的分布列和数学期望.








(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;
(2)若

①若







②若





某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为
)进行统计,按
分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在
的数据).

(1)求样本容量
和频率分布直方图中的
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望.





(1)求样本容量


(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量



某公司为确定下一年度投人某种产品的宣传费,需了解年宣传费
对年销售额(单位:万元)的影响,对近6年的年宣传费
和年销售额
数据进行了研究,发现宣传费
和年销售额
具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(I)根据表中数据建立
关于
的回归方程;
(Ⅱ)利用(I)中的回归方程预测该公司如果对该产品的宜传费支出为10万元时销售额是
万元,该公司计划从10名中层管理人员中挑选3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为
且随机变量
,求
的概率分布列与数学期望.
附:回归直线的倾斜率截距的最小二乘估计公式分别为:
,






(I)根据表中数据建立


(Ⅱ)利用(I)中的回归方程预测该公司如果对该产品的宜传费支出为10万元时销售额是




附:回归直线的倾斜率截距的最小二乘估计公式分别为:


某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为
)进行统计,按照[50,60),[60,70),[70,80),
[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了
高度在[50,60),[90,100]的数据).

1)求样本容量
和频率分布直方图中的
2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量
表示所抽取的3株高度在 [80,90) 内的株数,求随机变量
的分布列及数学期望.

[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了
高度在[50,60),[90,100]的数据).

1)求样本容量


2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量


某大学调研学生在
,
两家餐厅用餐的满意度,从在
,
两家餐厅都用过餐的学生中随机抽取了
人,每人分别对这两家餐厅进行评分,满分均为
分.
整理评分数据,将分数以
为组距分成
组:
,
,
,
,
,
,得到
餐厅分数的频率分布直方图,和
餐厅分数的频数分布表:
餐厅分数频数分布表
定义学生对餐厅评价的“满意度指数”如下:
(Ⅰ)在抽样的
人中,求对
餐厅评价“满意度指数”为
的人数.
(Ⅱ)从该校在
,
两家餐厅都用过餐的学生中随机抽取
人进行调查,试估计其对
餐厅评价的“满意度指数”比对
餐厅评价的“满意度指数”高的概率.
(Ⅲ)如果从
,
两家餐厅中选择一家用餐,你会选择哪一家?说明理由.






整理评分数据,将分数以










A餐厅分数频率分布直方图 |
![]() |

分数区间 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
定义学生对餐厅评价的“满意度指数”如下:
分数 | ![]() | ![]() | ![]() |
满意度指数 | ![]() | ![]() | ![]() |
(Ⅰ)在抽样的



(Ⅱ)从该校在





(Ⅲ)如果从


一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:
(I)根据散点图判断,
与
哪一个适宜作为产卵数
关于温度
的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立
关于
的回归方程;
(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中
,
=
,
=
,
=
)
对于一组数据
,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,

温度x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵个数y/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
(I)根据散点图判断,




(II)根据(I)的判断结果及表中数据,建立


(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中










![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
27.430 | 3.612 | 81.290 | 147.700 | 2763.764 | 705.592 | 40.180 |
对于一组数据







某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间
内,按
,
,
,
,
,
分成6组,其频率分布直方图如图所示.

(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的
列联表,并判断有多大把握认为“网购迷与性别有关系”;
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为
,求
的数学期望.
附:观测值公式:
临界值表:








(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的

| 男 | 女 | 合计 |
网购迷 | | 20 | |
非网购迷 | 45 | | |
合计 | | | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
| 网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为


附:观测值公式:

临界值表:
![]() | 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |