- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在
岁到
岁的人群中随机调查了
人,并得到如图所示的频率分布直方图,在这
人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这
人年龄的平均数;(写出必要的表达式)
(2)根据以上统计数据补全下面的
列联表,据此表,能否在犯错误的概率不超过
的前提下,认为以
岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
附:临界值表、公式





年龄 | 不支持“延迟退休年龄政策”的人数 |
![]() | 15 |
![]() | 5 |
![]() | 15 |
![]() | 23 |
![]() | 17 |

(1)由频率分布直方图,估计这

(2)根据以上统计数据补全下面的



| ![]() | ![]() | 总计 |
不支持 | | | |
支持 | | | |
总计 | | | |
附:临界值表、公式
![]() | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线
,其相关指数
,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个



①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个
A.0 | B.1 | C.2 | D.3 |
某学校为了了解该校某年级学生的阅读量(分钟),随机抽取了n名学生,调查他们一天的阅读时间,统计结果下图表所示:
(1)求出
与
的值;
(2)—天的阅读时间不少于35分钟称为“喜好阅读者”.根据以上数据,完成下面的
列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“喜好阅读者”与“性别”有关?
附:
(其中
为样本容量).
组号 | 分组 | 男生 人数 | 男生人数占本 组人数的频率 | 频率分布直方图 |
第1组 | ![]() | 5 | 0.5 | ![]() |
第2组 | ![]() | 18 | 0.9 | |
第3组 | ![]() | 24 | 0.8 | |
第4组 | ![]() | ![]() | 0.4 | |
第5组 | ![]() | 3 | 0.2 |
(1)求出


(2)—天的阅读时间不少于35分钟称为“喜好阅读者”.根据以上数据,完成下面的

| 喜好阅读者 | 非喜好阅读者 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
附:


![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
采用随机数表法从编号为01,02,03,……,30的30个个体中选取7个个体,指定从下面随机数表的第一行第5列开始,由左向右选取两个数字作为应取个体的号码,则选取的第6个个体号码是______.
03 47 43 86 36 16 47 80 45 69 11 14 16 95 36 61 46 98 63 71 62 33 26 36 77
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 52 24 52 79 89 73
03 47 43 86 36 16 47 80 45 69 11 14 16 95 36 61 46 98 63 71 62 33 26 36 77
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 52 24 52 79 89 73
为了了解居民消费情况,某地区调查了10000户小家庭的日常生活平均月消费金额,根据所得数据绘制了样本频率分布直方图,如图所示,每户小家庭的平均月消费金额均不超过9千元,其中第六组、第七组、第八组尚未绘制完成,但是已知这三组的频率依次成等差数列,且第六组户数比第七组多500户,

(1)求第六组、第七组、第八组的户数,并补画图中所缺三组的直方图;
(2)若定义月消费在3千元以下的小家庭为4类家庭,定义月消费在3千元至6千无的小家庭为B类家庭,定义月消费6千元以上的小家庭为C类家庭,现从这10000户家庭中按分层抽样的方法抽取80户家庭召开座谈会,间A,B,C各层抽取的户数分别是多少?

(1)求第六组、第七组、第八组的户数,并补画图中所缺三组的直方图;
(2)若定义月消费在3千元以下的小家庭为4类家庭,定义月消费在3千元至6千无的小家庭为B类家庭,定义月消费6千元以上的小家庭为C类家庭,现从这10000户家庭中按分层抽样的方法抽取80户家庭召开座谈会,间A,B,C各层抽取的户数分别是多少?
下表是降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对应数据,根据表中提供的数据,求出
关于
的线性回归方程为
,则表中
的值为( )






![]() | 3 | 4 | 5 | 6 |
![]() | 2.5 | ![]() | 4 | 4.5 |
A.3 | B.3.5 | C.4 | D.4.5 |
某中学随机选取了
名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求
的值及样本中男生身高在
(单位:
)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在
和
(单位:
)内的男生中任选两人,求这两人的身高都不低于
的概率. 

(Ⅰ)求



(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在





下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
则下列判断中正确的是()
| 空调类 | 冰箱类 | 小家电类 | 其它类 |
营业收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
净利润占比 | 95.80% | ﹣0.48% | 3.82% | 0.86% |
则下列判断中正确的是()
A.该公司2018年度冰箱类电器销售亏损 |
B.该公司2018年度小家电类电器营业收入和净利润相同 |
C.该公司2018年度净利润主要由空调类电器销售提供 |
D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 |
某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 800 |
不满意 | 300 | 200 | 400 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.