- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( )
A.120 | B.40 | C.30 | D.20 |
某学校组织了垃圾分类知识竞赛活动.设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取
张,按照自己的判断,将每张卡片放入对应的箱子中.按规则,每正确投放一张卡片得
分,投放错误得
分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得
分,放入其它箱子,得
分.从所有参赛选手中随机抽取
人,将他们的得分按照
,
,
,
,
分组,绘成频率分布直方图如图:

(1)分别求出所抽取的
人中得分落在组
和
内的人数;
(2)从所抽取的
人中得分落在组
的选手中随机选取
名选手,以
表示这
名选手中得分不超过
分的人数,求
的分布列和数学期望;
(3)如果某选手将抽到的20张卡片逐一随机放入四个箱子,能否认为该选手不会得到100分?请说明理由.












(1)分别求出所抽取的



(2)从所抽取的







(3)如果某选手将抽到的20张卡片逐一随机放入四个箱子,能否认为该选手不会得到100分?请说明理由.
垃圾分类是改善环境,节约资源的新举措.住建部于6月28日拟定了包括我市在内的46个重点试点城市,要求这些城市在2020年底基本建成垃圾分类处理系统.为此,我市某中学对学生开展了“垃圾分类”有关知识的讲座并进行测试,将所得测试成绩整理后,绘制出频率分布直方图如图所示.

(1)求频率分布直方图中a的值,并估计测试的平均成绩;
(2)将频率视为相应的概率,如果从参加测试的同学中随机选取4名同学,这4名同学中测试成绩在
的人数记为
,求
的分布列及数学期望.

(1)求频率分布直方图中a的值,并估计测试的平均成绩;
(2)将频率视为相应的概率,如果从参加测试的同学中随机选取4名同学,这4名同学中测试成绩在



国际青年物理学家竞赛(简称IYPT)是当今最受重视的中学生顶级国际物理赛事,某中学物理兴趣小组通过实验对其中一道竞赛题的两个物理量u、v进行测量,得到10组数据
,
……
,通过散点图发现u、v具有较强的线性相关关系,并且利用最小二乘法求得线性回归方程:
,由于数据保存失误导致
丢失,但
被保存,通过所学知识可以求得
______.







某书店为了了解销售单价(单位:元)在
内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在
内的图书数是销售单价在
内的图书数的2倍.

(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在
内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;
(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.










(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在

(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.
从一批产品中随机抽取
件测量其内径,将测得数据进行统计整理后得到如下图所示的频率分布直方图.

(Ⅰ)求这
件产品中,内径在
内的产品数量;
(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数
与
(单位毫米)的大小关系,不必说明理由.


(Ⅰ)求这


(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数


为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:

根据上述图表信息,下列结论错误的是( )
中国新能源汽车产销情况一览表 | |||||
| 新能源汽车生产情况 | 新能源汽车销售情况 | |||
产品(万辆) | 比上年同期 增长(%) | 销量(万辆) | 比上年同期 增长(%) | ||
2018年3月 | 6.8 | 105 | 6.8 | 117.4 | |
4月 | 8.1 | 117.7 | 8.2 | 138.4 | |
5月 | 9.6 | 85.6 | 10.2 | 125.6 | |
6月 | 8.6 | 31.7 | 8.4 | 42.9 | |
7月 | 9 | 53.6 | 8.4 | 47.7 | |
8月 | 9.9 | 39 | 10.1 | 49.5 | |
9月 | 12.7 | 64.4 | 12.1 | 54.8 | |
10月 | 14.6 | 58.1 | 13.8 | 51 | |
11月 | 17.3 | 36.9 | 16.9 | 37.6 | |
1-12月 | 127 | 59.9 | 125.6 | 61.7 | |
2019年1月 | 9.1 | 113 | 9.6 | 138 | |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |

根据上述图表信息,下列结论错误的是( )
A.2017年3月份我国新能源汽车的产量不超过![]() |
B.2017年我国新能源汽车总销量超过![]() |
C.2018年8月份我国新能源汽车的销量高于产量 |
D.2019年1月份我国插电式混合动力汽车的销量低于![]() |
“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?
某单位准备通过考试(按照高分优先录取的原则)录用
名,其中
个高薪职位和
个普薪职位.实际报名人数为
名,考试满分为
分. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:

试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
某单位准备通过考试(按照高分优先录取的原则)录用






试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
某市准备引进优秀企业进行城市建设. 城市分别对甲地、乙地5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.根据茎叶图,可知甲地、乙地企业评估得分的平均值分别是_______、______;试比较甲地、乙地企业得分方差大小__________. 
