- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第
号卡片恰好落入第
号小盒中,则称其为一个匹对,用
表示匹对的个数.
(1)求第2号卡片恰好落入第2号小盒内的概率;
(2)求匹对数
的分布列和数学期望
.



(1)求第2号卡片恰好落入第2号小盒内的概率;
(2)求匹对数


小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为
现对三只小白鼠注射这种药物.
(Ⅰ)求这三只小白鼠表现症状互不相同的概率;
(Ⅱ)用
表示三只小白鼠共表现症状的种数,求
的分布列及数学期望.

(Ⅰ)求这三只小白鼠表现症状互不相同的概率;
(Ⅱ)用


在某校举办的元旦有奖知识问答中,甲、乙、丙三人同时回答一道有关环保知识的问题,已知甲回答对这道题的概率是
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
.
(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人同时回答这道题时至少一人答错该题的概率.



(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人同时回答这道题时至少一人答错该题的概率.
在某校举办的元旦有奖知识问答中,甲、乙、丙三人同时回答一道有关环保知识的问题,已知甲回答对这道题的概率是
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
.
(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)用
表示回答对该题的人数,求
的分布列和数学期望
.



(Ⅰ)求乙、丙两人各自回答对这道题的概率;
(Ⅱ)用



某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:
已知分3期付款的频率为
,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用
表示销售一套该户型住房的利润.
(1)求上表中
的值;
(2)若以频率分为概率,求事件
:“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率
;
(3)若以频率作为概率,求
的分布列及数学期望
.
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 | ![]() | 10 | ![]() |
已知分3期付款的频率为


(1)求上表中

(2)若以频率分为概率,求事件


(3)若以频率作为概率,求


一个口袋中有大小相同的
个白球和
个黑球,每次从袋中随机地摸出
个球,并换入
只相同大小的黑球,这样继续下去,求:
(1)摸
次摸出的都是白球的概率;
(2)第
次摸出的是白球的概率.




(1)摸

(2)第
