- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市教育部门拟从18名高中数学教师中选拔2人参加省教师技能大赛.为缩短比赛时间,将这18名教师随机分成
,
两组,其选拔赛成绩的茎叶图如图所示.该教育部门先将成绩不低于85分的教师初选出来进行培训后,再从中选拔2人参加省教师技能大赛.

(Ⅰ)若仅从初选选手中随机抽选2人参加省赛,并记抽选的2人中来自
组的人数为
,试求
的分布列和期望值;
(Ⅱ)在(Ⅰ)的条件下,若参加省赛的2人是同性的概率等于
,求初选出来参加培训的男教师和女教师的人数.



(Ⅰ)若仅从初选选手中随机抽选2人参加省赛,并记抽选的2人中来自



(Ⅱ)在(Ⅰ)的条件下,若参加省赛的2人是同性的概率等于

某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为:
商场经销该商品,可采用不同形式的分期付款,付款的期数
(单位:
)与商场经销一件商品的利润
(单位:元)满足如下关系:
(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为
,试求事件
的概率
;
(Ⅱ)求商场经销一件商品的利润
的分布列及期望
.

![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销该商品,可采用不同形式的分期付款,付款的期数




(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为



(Ⅱ)求商场经销一件商品的利润


某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布
,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过
小时的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
一款砸金蛋游戏的规则如下:每盘游戏都需要砸三个金蛋,每次砸蛋要么出现金花,要么不出现,已知每次砸蛋出现金花的概率为
,且各次砸蛋出现金花与否相互独立.则玩三盘游戏,至少有一盘出现金花的概率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;
(2)请分析比较甲、乙两人谁面试通过的可能性大?

(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;
(2)请分析比较甲、乙两人谁面试通过的可能性大?