- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为
,答对文科题的概率均为
,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分
的分布列与数学期望
.
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为




2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市
个一孩家庭,它们中有二孩计划的家庭频数分布如下表:
(1)由以上统计数据完成如下
列联表,并判断是否有
的把握认为是否有二孩计划与家庭收入有关?说明你的理由.
(2)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为
,且每个家庭是否为“好字”家庭互不影响,设收入在
千~
万的
个有二孩计划家庭中“好字”家庭有
个,求
的分布列及数学期望.
下面的临界值表供参考:

家庭月收入(单位:元) | ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() ![]() | ![]() |
调查的总人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
有二孩计划的家庭数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |


| 收入不高于![]() | 收入高于![]() | 合计 |
有二孩计划的家庭数 | | | |
无二孩计划的家庭数 | | | |
合计 | | | |






下面的临界值表供参考:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)是否可以犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量
:
①求对商品和服务全好评的次数
的分布列(概率用组合数算式表示);
②求
的数学期望和方差.

(1)是否可以犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量

①求对商品和服务全好评的次数

②求

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

甲、乙两人组成“火星队”参加投篮游戏,每轮游戏中甲、乙各投一次,如果两人都投中,则“火星队”得4分;如果只有一人投中,则“火星队”得2分;如果两人都没投中,则“火星队”得0分.已知甲每次投中的概率为
,乙每次投中的概率为
;每轮游戏中甲、乙投中与否互不影响,假设“火星队”参加两轮游戏,求:
(I)“火星队”至少投中3个球的概率;
(II)“火星队”两轮游戏得分之和X的分布列和数学期望EX.


(I)“火星队”至少投中3个球的概率;
(II)“火星队”两轮游戏得分之和X的分布列和数学期望EX.
小明在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次
发放1个,甲、乙、丙每人每次抢到红包的概率均为
.
(1)若小明发放1元的红包2个,求甲最多抢到1个红包的概率;
(2)若小明共发放3个红包,第一次发放5元,第二次发放5元,第三次发放10元,记甲抢到红包的总
金额为
元,求
的分布列和数学期望.
发放1个,甲、乙、丙每人每次抢到红包的概率均为

(1)若小明发放1元的红包2个,求甲最多抢到1个红包的概率;
(2)若小明共发放3个红包,第一次发放5元,第二次发放5元,第三次发放10元,记甲抢到红包的总
金额为


某脐橙基地秋季出现持续阴雨寡照等异常天气,对脐橙物候和产量影响明显,导致脐橙春季物候期推迟,畸形花增多,果实偏小,落果增多,对产量影响较大.为此有关专家提出2种在异常天气下提高脐橙果树产量的方案,每种方案都需分两年实施.实施方案1:预计第一年可以使脐橙产量恢复到灾前的1.0倍、0.8倍的概率分别是0.4、0.6;第二年可以使脐橙产量为第一年的1.25倍、1.1倍的概率分别是0.5、0.5. 实施方案2:预计第一年可以使脐橙产量恢复到灾前的1.2倍、0.8倍的概率分别是0.5、0.5;第二年可以使脐橙产量为第一年的1.25倍、1.0倍的概率分别是0.6、0.4.实施每种方案第一年与第二年相互独立,令
表示方案1实施两年后脐橙产量达到灾前产量的倍数,
表示方案2实施两年后脐橙产量达到灾前产量的倍数.
(1)分别求
,
的分布列和数学期望;
(2)不管哪种方案,如果实施两年后,脐橙产量不高于和高于灾前产量的预计利润分别为12万元和20万元.为了实现两年后的平均利润更大,应该选择哪种方案?


(1)分别求


(2)不管哪种方案,如果实施两年后,脐橙产量不高于和高于灾前产量的预计利润分别为12万元和20万元.为了实现两年后的平均利润更大,应该选择哪种方案?
某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:
,
,
,
,
,得到如图所示的频率分布直方图:
(Ⅰ)写出
的值;
(Ⅱ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人,并用
表示其中男生的人数,求
的分布列和数学期望.





(Ⅰ)写出

(Ⅱ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人,并用


