- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场五一期间搞促销活动,顾客购物满一定数额可自愿进行以下游戏:花费
元从
中挑选一个点数, 然后掷骰子
次, 若所选的点数出现, 则先退还顾客
元, 然后根据所选的点数出现的次数, 每次再额外给顾客
元奖励;若所选的点数不出现, 则
元不再退还.
(1)某顾客参加游戏, 求该顾客获奖的概率;
(2)计算顾客在此游戏中的净收益
的分布列与数学期望.






(1)某顾客参加游戏, 求该顾客获奖的概率;
(2)计算顾客在此游戏中的净收益

某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不
使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也
不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现
从这36人中随机抽取两人.
(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;
(2)设这两人中享受折扣优惠的人数为ξ,求ξ的概率分布和均值.
使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也
不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现
从这36人中随机抽取两人.
(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;
(2)设这两人中享受折扣优惠的人数为ξ,求ξ的概率分布和均值.
要获得某项英语资格证书必须依次通过听力和笔试两项考试,只有听力成绩合格时,才可继续参加笔试的考试.已知听力和笔试各只允许有一次补考机会,两项成绩均合格方可获得证书.现某同学参加这项证书考试,根据以往模拟情况,听力考试成绩每次合格的概率均为
,笔试考试成绩每次合格的概率均为
,假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)求他恰好补考一次就获得证书的概率;
(3)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为
,求参加考试次数
的期望值.


(1)求他不需要补考就可获得证书的概率;
(2)求他恰好补考一次就获得证书的概率;
(3)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为


先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
,命中得
分,没有命中得
分;向乙靶射击两次,每次命中的概率为
,每命中一次得
分,没有命中得
分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(Ⅰ)求该射手恰好命中一次的概率;
(Ⅱ)求该射手的总得分
的分布列及数学期望
.






(Ⅰ)求该射手恰好命中一次的概率;
(Ⅱ)求该射手的总得分


(题文)微信已成为现代生活信息交流的重要工具,对某市年龄在
岁至
岁的微信用户进行抽样调查发现,有三分之一的用户平均每天使用微信时间不超过
小时,其他都在
小时以上;将这些微信用户按年龄分成青年人(
岁)和中年人(
岁),其中四分之三是青年人;平均每天使用微信时间超过
小时的为经常使用微信,经常使用微信的用户中有三分之二是青年人.现对该市微信用户进行“经常使用微信与年龄关系”调查,采用随机抽样的方法选取容量为
的一个样本,假设该样本与调查结果吻合.
(Ⅰ)计算青年人(
岁)和中年人(
岁)中经常使用微信和不经常使用微信的人数,并填写下面的
列联表;

(Ⅱ)根据(Ⅰ)中的数据,利用独立性检验的方法判断是否有
%的把握认为“经常使用微信与年龄有关”?
附:
,

(Ⅲ)从该市微信用户中任意选取
人,其中经常使用微信的中年人的人数为
,求
的分布列和数学期望.








(Ⅰ)计算青年人(




(Ⅱ)根据(Ⅰ)中的数据,利用独立性检验的方法判断是否有

附:


(Ⅲ)从该市微信用户中任意选取



某中学高三年级共有8个班,其中1个文科班,7个理科班,学期初高三年级有10名同学自愿组成了社区服务小组,其中文科班有3名同学,理科班各有1名同学,现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动.
(1)求选中的3名同学全都来自不同班级的概率;
(2)设
为选中的3名同学中文科班同学的人数,求随机变量
的分布列和数学期望.
(1)求选中的3名同学全都来自不同班级的概率;
(2)设


在一个圆锥体的培养房内培养了
只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.
(Ⅰ)求蜜蜂落入第二实验区的概率;
(Ⅱ)若其中有
只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率;
(Ⅲ)记
为落入第一实验区的蜜蜂数,求随机变量
的数学期望
.

(Ⅰ)求蜜蜂落入第二实验区的概率;
(Ⅱ)若其中有

(Ⅲ)记


